• Title/Summary/Keyword: Interaction Device

Search Result 646, Processing Time 0.032 seconds

Gesture based Input Device: An All Inertial Approach

  • Chang Wook;Bang Won-Chul;Choi Eun-Seok;Yang Jing;Cho Sung-Jung;Cho Joon-Kee;Oh Jong-Koo;Kim Dong-Yoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.230-245
    • /
    • 2005
  • In this paper, we develop a gesture-based input device equipped with accelerometers and gyroscopes. The sensors measure the inertial measurements, i.e., accelerations and angular velocities produced by the movement of the system when a user is inputting gestures on a plane surface or in a 3D space. The gyroscope measurements are integrated to give orientation of the device and consequently used to compensate the accelerations. The compensated accelerations are doubly integrated to yield the position of the device. With this approach, a user's gesture input trajectories can be recovered without any external sensors. Three versions of motion tracking algorithms are provided to cope with wide spectrum of applications. Then, a Bayesian network based recognition system processes the recovered trajectories to identify the gesture class. Experimental results convincingly show the feasibility and effectiveness of the proposed gesture input device. In order to show practical use of the proposed input method, we implemented a prototype system, which is a gesture-based remote controller (Magic Wand).

Z-Clutching: Interaction Technique for Navigating 3D Virtual Environment Using a Generic Haptic Device

  • Song, Deok-Jae;Kim, Seokyeol;Park, Jinah
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.1
    • /
    • pp.32-38
    • /
    • 2016
  • Navigating a large 3D virtual environment using a generic haptic device can be challenging since the haptic device is usually bounded by its own physical workspace. On the other hand, mouse interaction easily handles the situation with a clutching mechanism-simply lifting the mouse and repositioning its location in the physical space. Since the haptic device is used for both input and output at the same time, in many cases, its freedom needs to be limited in order to accommodate such a situation. In this paper, we propose a new mechanism called Z-Clutching for 3D navigation of a virtual environment by using only the haptic device without any interruption or sacrifice in the given degrees of freedom of the device's handle. We define the clutching state which is set by pulling the haptic handle back into space. It acts similarly to lifting the mouse off the desk. In this way, the user naturally feels the haptic feedback based on the depth (z-direction), while manipulating the haptic device and moving the view as desired. We conducted a user study to evaluate the proposed interaction technique, and the results are promising in terms of the usefulness of the proposed mechanism.

Development of Wheel-Terrain Interaction Device for Mobility Prediction of Off-road Vehicle (야지 차량의 기동성 예측을 위한 휠-토양 상호작용 시험장치 개발)

  • Oh, Hyunhwan;Kim, Gwanyoung;Kim, Jinseong;Shin, Yongjae;Lee, Kyu-Jin;Choi, Minsuk;Lee, Soo Jin
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.4
    • /
    • pp.332-339
    • /
    • 2014
  • This paper presents on the development of wheel-terrain interaction device using low-priced sensors, which will be used to predict the drawbar pull and optimal slip of off-road vehicle in real time. The essential variables obtained in the device to predict the mobility of vehicles are determined based on semi-empirical model describing the wheel-terrain interaction. Using the developed device, the experiments about the wheel-terrain interaction were performed on the soil of the Jumunjin standard sand, which yielded dynamic weight, motor driving torque, drawbar pull, and sinkage with respect to wheel slip ratio. Finally, the repeatability of the measured data are verified through repeating the experiments three times on the same condition.

Effects of Modality and Smart Device on Learner's Interaction Experience in Online Learning (스마트 기기를 활용한 온라인 토론학습에서 모달리티가 학습자의 상호작용경험에 미치는 영향)

  • Park, Seyoung;Shin, Dong-Hee;Kim, Tae-Yang;Shin, Jae-Eun
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.2
    • /
    • pp.507-519
    • /
    • 2015
  • Along with the rapid diffusion of smart devices, smart learning has been taking place as a main pedagogy in education. Under these drastic changing circumstances, social presence and interaction between learners have been highlighted as key factors in educational research. In this light of rising importance, this study examined the effects of modality and smart device on users' perceived social presence and interaction experience in a smart learning environment. It conducted 2(text based interface vs. audio/video based interface) by 2(smartphone vs. tablet PC) between-subjects experiment. 80 participants were systematically recruited and randomly assigned to four conditions. The findings showed that social presence was higher in audio/video based interface condition than in text based interface condition. Modality also had a positive effect on learner's interaction experience. On the other hand, the effect of smart device is found to be statistically insignificant. Instead, interaction effect existed between modality and device on social presence. The result of this study suggests that the modality and characteristics of device should be considered seriously when designing interface of smart learning contents. The findings in this study provide future studies with heuristic implications by highlighting users' perceived cognition and experience.

A Study on Structuring and Classification of Input Interaction

  • Pan, Young-Hwan
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.493-498
    • /
    • 2012
  • Objective: The purpose of this study is to suggest the hierarchical structure with three layers of input task, input interaction, and input device. Background: Understanding the input interaction is very helpful to design an interface design. Method: We made a model of three layered input structure based on empirical approach and applied to a gesture interaction in TV. Result: We categorized the input tasks into six elementary tasks which are select, position, orient, text, and quantify. The five interactions described in this paper could accomplish the full range of input interaction, although the criteria for classification were not consistent. We analyzed the Microsoft kinect with this structure. Conclusion: The input interactions of command, 4 way, cursor, touch, and intelligence are basic interaction structure to understanding input system. Application: It is expected the model can be used to design a new input interaction and user interface.

Gate-Controlled Spin-Orbit Interaction Parameter in a GaSb Two-Dimensional Hole gas Structure

  • Park, Youn Ho;Koo, Hyun Cheol;Shin, Sang-Hoon;Song, Jin Dong;Kim, Hyung-Jun;Chang, Joonyeon;Han, Suk Hee;Choi, Heon-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.382-383
    • /
    • 2013
  • Gate-controlled spin-orbit interaction parameter is a key factor for developing spin-Field Effect Transistor (Spin-FET) in a quantum well structure because the strength of the spin-orbit interaction parameter decides the spin precession angle [1]. Many researches show the control of spin-orbit interaction parameter in n-type quantum channels, however, for the complementary logic device p-type quantum channel should be also necessary. We have calculated the spin-orbit interaction parameter and the effective mass using the Shubnikov-de Haas (SdH) oscillation measurement in a GaSb two-dimensional hole gas (2DHG) structure as shown in Fig 1. The inset illustrates the device geometry. The spin-orbit interaction parameter of $1.71{\times}10^{11}$ eVm and effective mass of 0.98 $m^0$ are obtained at T=1.8 K, respectively. Fig. 2 shows the gate dependence of the spin-orbit interaction parameter and the hole concentration at 1.8 K, which indicates the spin-orbit interaction parameter increases with the carrier concentration in p-type channel. On the order hand, opposite gate dependence was found in n-type channel [1,2]. Therefore, the combined device of p- and n-type channel spin transistor would be a good candidate for the complimentary logic device.

  • PDF

Equivalent Physical Damping Parameter Estimation for Stable Haptic Interaction (안정적인 햅틱 상호작용을 위한 등가 물리적 댐핑 추정)

  • Kim, Jong-Phil;Seo, Chang-Hhoon;Ryu, Je-Ha
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.2
    • /
    • pp.135-141
    • /
    • 2006
  • This paper presents offline estimation of equivalent physical damping parameter in haptic interaction systems where damping is the most important parameter for stability. Based on the previous energy bounding algorithm, an offline procedure is developed in order to estimate the physical damping parameter of a haptic device by measuring energy flow-in to the haptic device. The proposed method does not use force/torque sensor at the handgrip. Numerical simulation and experiments verified effectiveness of the proposed method.

  • PDF

A study of the kinematic characteristic of a coupling device between the buffer system and the flexible pipe of a deep-seabed mining system

  • Oh, Jae-Won;Lee, Chang-Ho;Hong, Sup;Bae, Dae-Sung;Cho, Hui-Je;Kim, Hyung-Woo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.652-669
    • /
    • 2014
  • This paper concerns the kinematic characteristics of a coupling device in a deep-seabed mining system. This coupling device connects the buffer system and the flexible pipe. The motion of the buffer system, flexible pipe and mining robot are affected by the coupling device. So the coupling device should be considered as a major factor when this device is designed. Therefore, we find a stable kinematic device, and apply it to the design coupling device through this study. The kinematic characteristics of the coupling device are analyzed by multi-body dynamics simulation method, and finite element method. The dynamic analysis model was built in the commercial software DAFUL. The Fluid Structure Interaction (FSI) method is applied to build the deep-seabed environment. Hydrodynamic force and moment are applied in the dynamic model for the FSI method. The loads and deformation of flexible pipe are estimated for analysis results of the kinematic characteristics.

Design and Evaluation of Motion-based Interface for Image Browsing in Mobile Devices (모바일 장치에서의 이미지 브라우징을 위한 동작 추적 기반 인터페이스의 설계 및 평가)

  • Yim, Sung-Hoon;Choi, Seung-Moon
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.40-44
    • /
    • 2009
  • In this paper, we evaluate the feasibility of a motion-based interaction for image browsing in the mobile device. We present the design of a motion-based interface and a navigation scheme. A designed interaction scheme was evaluated in a usability experiment alongside the conventional button-based interaction for image browsing. After enough training of user, the usability and the user task performance of the motion based interaction were significantly increased, approaching those of the button based interaction.

  • PDF