• Title/Summary/Keyword: Interacting multiple model

Search Result 111, Processing Time 0.022 seconds

The study on target tracking filter using interacting multiple model for tracking maneuvering target (기동표적 추적을 위한 상호작용다수모델 추적필터에 관한 연구)

  • Kim, Seung-Woo
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.137-144
    • /
    • 2007
  • Fire Control System(FCS) errors can be classified as hardware errors and software errors, and one of the software errors is from target tracking filter which estimates target's location, velocity, acceleration, and so on. It affects function of ballistic calculation equipment significantly. For gun to form predicted hitting point accurately and enhance hitting rate, we need status information of target's future location. Target tracking filter algorithms consist of Single Singer Model, Fixed Gain filter algorithm, IMM, PBIMM and so on. This paper will design IMM tracking filer, which is going to be! applied to domestic warship. Target tracking filter using CV model, Song model and CRT model for IMM tracking filter is made, and tracking ability is analyzed through Monte-Carlo simulation.

  • PDF

Prediction of Centerlane Violation for vehicle in opposite direction using Fuzzy Logic and Interacting Multiple Model (퍼지 논리와 Interacting Multiple Model (IMM)을 통한 잡음환경에서의 맞은편 차량의 중앙선 침범 예측)

  • Kim, Beomseong;Choi, Baehoon;An, Jhonghyen;Lee, Heejin;Kim, Euntai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.444-450
    • /
    • 2013
  • For intelligent vehicle technology, it is very important to recognize the states of around vehicles and assess the collision risk for safety driving of the vehicle. Specifically, it is very fatal the collision with the vehicle coming from opposite direction. In this paper, a centerlane violation prediction method is proposed. Only radar signal based prediction makes lots of false alarm cause of measurement noise and the false alarm can make more danger situation than the non-prediction situation. We proposed the novel prediction method using IMM algorithm and fuzzy logic to increase accuracy and get rid of false positive. Fuzzy logic adjusts the radar signal and the IMM algorithm appropriately. It is verified by the computer simulation that shows stable prediction result and fewer number of false alarm.

Robust Filtering Algorithm for Improvement of Air Navigation System (항행시스템 성능향상을 위한 강인한 필터링 알고리즘)

  • Cho, Taehwan;Kim, Jinhyuk;Choi, Sangbang
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.2
    • /
    • pp.123-132
    • /
    • 2015
  • Among various fields of the CNS/ATM, the surveillance field which includes ADS-B system, MLAT system, and WAM system is implemented. These next generation systems provide superior performance in tracking aircrafts. However, They still have error. In this paper, filtering algorithm is proposed in order to enhance aircraft tracking performance of ADS-B, MLAT, and WAM systems. The proposed method is a Robust Interacting Multiple Model filter, called Robust IMM filter, that improves IMM filter. The Robust IMM filter can not only improves the aircraft tracking performance but also track aircraft continually using estimates calculated from the filter when data losses occur. The simulation results of the proposed aircraft tracking methods show that the filtering data provides a better performance up to an average of 19.21%.

A Design of the IMM Filter for Improving Position Error of the INS / GPS Integrated System (INS/GPS 통합 항법 시스템의 위치 오차 개선을 위한 IMM 필터 설계)

  • Baek, Seung-jun
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.3
    • /
    • pp.221-227
    • /
    • 2019
  • In this paper, interacting multiple model (IMM) filter was designed that guarantees a stable navigation performance even in the unstable satellite navigation position. In order to design IMM filter in INS / GPS integrated navigation system, sub filter of the IMM filter is defined as Kalman filter. In the IMM filter configuration, two subfilters are determined. Each Kalman filter defines the six-teenth state composed of position, velocity, attitude, and sensor error from the INS error equation and the states additionally derived in case of the coloured measurement noise. In order to verify the performance of the proposed filter, we compared the performance how the filter works in the presence of arbitrary error in GPS navigation solution. The Monte Carlo simulation was performed 100 times and the results were compared with the root mean square(RMS). The results show that the proposed method is stable against errors and show fast convergence.

Comparison of Ballistic-Coefficient-Based Estimation Algorithms for Precise Tracking of a Re-Entry Vehicle and its Impact Point Prediction

  • Moon, Kyung Rok;Kim, Tae Han;Song, Taek Lyul
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.363-374
    • /
    • 2012
  • This paper studies the problem of tracking a re-entry vehicle (RV) in order to predict its impact point on the ground. Re-entry target dynamics combined with super-high speed has a complex non-linearity due to ballistic coefficient variations. However, it is difficult to construct a database for the ballistic coefficient of a unknown vehicle for a wide range of variations, thus the reliability of target tracking performance cannot be guaranteed if accurate ballistic coefficient estimation is not achieved. Various techniques for ballistic coefficient estimation have been previously proposed, but limitations exist for the estimation of non-linear parts accurately without obtaining prior information. In this paper we propose the ballistic coefficient ${\beta}$ model-based interacting multiple model-extended Kalman filter (${\beta}$-IMM-EKF) for precise tracking of an RV. To evaluate the performance, other ballistic coefficient model based filters, which are gamma augmented filter, gamma bootstrapped filter were compared and assessed with the proposed ${\beta}$-IMM-EKF for precise tracking of an RV.

Fault Detection and Diagnosis of Dynamic Systems with Sequentially Correlated Measurement Noise

  • Kim, B.S.;Y, J. Lee;Kim, K.Y.;Lee, I.S.;Lee, D.Y.;Lee, J.W.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.157.4-157
    • /
    • 2001
  • An effective approach to detect and diagnose multiple failures in a dynamic system is proposed for the case where the measurement noise is correlated sequentially in time. It is based on the modified interacting multiple-model (MIMM) estimation algorithm in which a generalized decorrelation process is developed by employing the autoregressive (AR) model for the correlated measurement noise. Numerical example for the nuclear steam generator is provided to illustrate the enhanced performance of the proposed algorithm.

  • PDF

GA-Based IMM Method Using Fuzzy Logic for Tracking a Maneuvering Target (기동 표적 추적을 위한 GA 기반 IMM 방법)

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.166-169
    • /
    • 2002
  • The accuracy in maneuvering target tracking using multiple models is caused by the suitability of each target motion model to be used. The interacting multiple model (IMM) algorithm and the adaptive IMM algorithm require the predefined sub-models and the predetermined acceleration intervals, respectively, in consideration of the properties of maneuvers to construct multiple models. In this paper, to solve these problems intelligently, a genetic algorithm (GA) based-IMM method using fuzzy logic is proposed. In the proposed method, a sub-model is represented as a set of fuzzy rules to model the time-varying variances of the process noises of a new piecewise constant white acceleration model, and the GA is applied to identify this fuzzy model. The proposed method is compared with the AIMM algorithm in simulations.

  • PDF

Performance Analysis on the IMM-PDAF Method for Longitudinal and Lateral Maneuver Detection using Automotive Radar Measurements (차량용 레이더센서를 이용한 IMM-PDAF 기반 종-횡방향 운동상태 검출 및 추정기법에 대한 성능분석)

  • Yoo, Jeongjae;Kang, Yeonsik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.224-232
    • /
    • 2015
  • In order to develop an active safety system which avoids or mitigates collisions with preceding vehicles such as autonomous emergency braking (AEB), accurate state estimation of the nearby vehicles is very important. In this paper, an algorithm is proposed using 3 dynamic models to better estimate the state of a vehicle which has various dynamic patterns in both longitudinal and lateral direction. In particular, the proposed algorithm is based on the Interacting Multiple Model (IMM) method which employs three different dynamic models, in cruise mode, lateral maneuver mode and longitudinal maneuver mode. In addition, a Probabilistic Data Association Filter (PDAF) is utilized as a data association algorithm which can improve the reliability of the measurement under a clutter environment. In order to verify the performance of the proposed method, it is simulated in comparison with a Kalman filter method which employs a single dynamic model. Finally, the proposed method is validated using radar data obtained from the field test in the proving ground.

GA-Based IMM Method for Tracking a Maneuvering Target (기동 표적 추적을 위한 유전 알고리즘 기반 상호 작용 다중 모델 기법)

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2382-2384
    • /
    • 2002
  • The accuracy in maneuvering target tracking using multiple models is caused by the suitability of each target motion model to be used. The interacting multiple model (IMM) algorithm and the adaptive IMM (AIMM) algorithm require the predefined sub-models and the predetermined acceleration intervals, respectively, in consideration of the properties of maneuvers in order to construct multiple models. In this paper, to solve these problems intelligently, a genetic algorithm (GA) based-IMM method using fuzzy logic is proposed. In the proposed method, the acceleration input is regarded as an additive noise and a sub-model is represented as a set of fuzzy rules to model the time-varying variances of the process noises of a new piecewise constant white acceleration model. The proposed method is compared with the AIMM algorithm in simulations.

  • PDF

Estimation of baro-altimeter errors via model transition technique (모델 전이 기법을 이용한 기압고도계의 오차 추정)

  • 황익호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.32-35
    • /
    • 1996
  • In this paper, it is shown that the dominant errors of baro-altimeters can be characterized by bias and scale factor errors. Also an optimal filter for estimating both bias and scale factor is derived based on the concept of model transition. The optimal filter is, however, not realizable because the model transition hypotheses increase exponentially. Therefore a realizable suboptimal filter using the interacting multiple model(IMM) technique is proposed. Computer simulation results show that the estimation errors of the proposed filter are smaller than those of the conventional least squares algorithm with a forgetting factor when both the bias and the scale factor are varying.

  • PDF