• 제목/요약/키워드: Interacting multiple model

검색결과 111건 처리시간 0.023초

복합모델 다차량 추종 기법을 이용한 차량 주행 제어 (Vehicle Cruise Control with a Multi-model Multi-target Tracking Algorithm)

  • 문일기;이경수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.696-701
    • /
    • 2004
  • A vehicle cruise control algorithm using an Interacting Multiple Model (IMM)-based Multi-Target Tracking (MTT) method has been presented in this paper. The vehicle cruise control algorithm consists of three parts; track estimator using IMM-Probabilistic Data Association Filter (PDAF), a primary target vehicle determination algorithm and a single-target adaptive cruise control algorithm. Three motion models; uniform motion, lane-change motion and acceleration motion, have been adopted to distinguish large lateral motions from longitudinal motions. The models have been validated using simulated and experimental data. The improvement in the state estimation performance when using three models is verified in target tracking simulations. The performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. These simulations show system response that is more realistic and reflective of actual human driving behavior.

  • PDF

Prediction-based Interacting Multiple Model Estimation Algorithm for Target Tracking with Large Sampling Periods

  • Ryu, Jon-Ha;Han, Du-Hee;Lee, Kyun-Kyung;Song, Taek-Lyul
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권1호
    • /
    • pp.44-53
    • /
    • 2008
  • An interacting multiple model (IMM) estimation algorithm based on the mixing of the predicted state estimates is proposed in this paper for a right continuous jump-linear system model different from the left-continuous system model used to develop the existing IMM algorithm. The difference lies in the modeling of the mode switching time. Performance of the proposed algorithm is compared numerically with that of the existing IMM algorithm for noisy system identification. Based on the numerical analysis, the proposed algorithm is applied to target tracking with a large sampling period for performance comparison with the existing IMM.

Multiple Behavior s Learning and Prediction in Unknown Environment

  • Song, Wei;Cho, Kyung-Eun;Um, Ky-Hyun
    • 한국멀티미디어학회논문지
    • /
    • 제13권12호
    • /
    • pp.1820-1831
    • /
    • 2010
  • When interacting with unknown environments, an autonomous agent needs to decide which action or action order can result in a good state and determine the transition probability based on the current state and the action taken. The traditional multiple sequential learning model requires predefined probability of the states' transition. This paper proposes a multiple sequential learning and prediction system with definition of autonomous states to enhance the automatic performance of existing AI algorithms. In sequence learning process, the sensed states are classified into several group by a set of proposed motivation filters to reduce the learning computation. In prediction process, the learning agent makes a decision based on the estimation of each state's cost to get a high payoff from the given environment. The proposed learning and prediction algorithms heightens the automatic planning of the autonomous agent for interacting with the dynamic unknown environment. This model was tested in a virtual library.

IMM 기법을 이용한 기압고도계 오차 식별 필터 (Interacting Multiple Model Baro-Error Identification Filter)

  • 황익호;나원상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.290-291
    • /
    • 2007
  • Barometers can provide height information steady but its accuracy becomes poor as the air data varies due to the vehicles's moving or time's elapsing. In order to keep the accuracy in spite of the air data changes, we propose a filter for the identification of baro-errors. The baro-errors mainly consist of bias and scale factor errors which gradually varies as the air data varies. With GPS height measurements, the scale factor and bias estimator is designed by applying the interacting multiple model (IMM) filtering technique to the baro-error random walk model. The resultant estimates are used to compensate current baro-measurement to supply accurate measurements steadily.

  • PDF

다차량 추종 적응순항제어 (Multi-Vehicle Tracking Adaptive Cruise Control)

  • 문일기;이경수
    • 대한기계학회논문집A
    • /
    • 제29권1호
    • /
    • pp.139-144
    • /
    • 2005
  • A vehicle cruise control algorithm using an Interacting Multiple Model (IMM)-based Multi-Target Tracking (MTT) method has been presented in this paper. The vehicle cruise control algorithm consists of three parts; track estimator using IMM-Probabilistic Data Association Filter (PDAF), a primary target vehicle determination algorithm and a single-target adaptive cruise control algorithm. Three motion models; uniform motion, lane-change motion and acceleration motion. have been adopted to distinguish large lateral motions from longitudinal motions. The models have been validated using simulated and experimental data. The improvement in the state estimation performance when using three models is verified in target tracking simulations. The performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. These simulations show system response that is more realistic and reflective of actual human driving behavior.

시변가산유색잡음하의 음성 향상을 위한 효율적인 Mixture IMM 알고리즘 (Efficient Mixture IMM Algorithm for Speech Enhancement under Nonstationary Additive Colored Noise)

  • 이기용;임재열
    • 한국음향학회지
    • /
    • 제18권8호
    • /
    • pp.42-47
    • /
    • 1999
  • 본 논문에서는 시변가산유색잡음에 오염된 음성신호의 향상을 위한 MIMM(mixture interacting multiple model) 알고리즘을 제안 한다. 제안된 방법에서 음성신호는 혼합 은닉필터모델(hidden filter model: HFM)로 모델링되며, 잡음신호는 하나의 은닉필터로 모델링 된다. MIMM 알고리즘은 혼합 은닉필터모델에 의한 다중 Kalman 필터링에 기초한 회귀계산이기 때문에 계산량이 많아, Kalman 필터링 식의 구조적 측면에서 효율적인 계산이 가능하도록 알고리즘을 구현했다. 시뮬레이션 결과, 제안된 방법이 기존의 결과 [4,5]에 비하여 성능향상이 이루어 졌음을 보여 준다.

  • PDF

M&S를 이용한 사격통제 시스템의 설계검증 및 성능분석에 관한 연구 (The performance analysis and design verification about the fire control system using Modeling and Simulation)

  • 윤동식;김천환;임영택;배윤지
    • 시스템엔지니어링학술지
    • /
    • 제5권1호
    • /
    • pp.1-6
    • /
    • 2009
  • Gun fire solution computed in ballistic computing unit (BCU) needs to evaluated before applying in real fire. In this paper, ballistic performance analysis method is studied for reasonable prediction or hit probability with ballistics error presentation on hitting plane. Also Gun fire solution using interacting multiple model (IMM) algorithm is analyzed through proposed method.

  • PDF

기동 표적 추적을 위한 DNA 코딩 기반 상호작용 다중모델 기법 (A DNA Coding-Based Interacting Multiple Model Method for Tracking a Maneuvering Target)

  • 이범직;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.87-91
    • /
    • 2002
  • The problem of maneuvering target tracking has been studied in the field of the state estimation over decades. The Kalman filter has been widely used to estimate the state of the target, but in the presence of a maneuver, its performance may be seriously degraded. In this paper, to solve this problem and track a maneuvering target effectively, a DNA coding-based interacting multiple model (DNA coding-based IMM) method is proposed. The proposed method can overcome the mathematical limits of conventional methods by using the fuzzy logic based on DNA coding method. The tracking performance of the proposed method is compared with those of the adaptive IMM algorithm and the GA-based IMM method in computer simulations.

  • PDF

Weighted IMM 기법을 사용한 각도 추정 오차 감소 기법 (Angle Estimation Error Reduction Method Using Weighted IMM)

  • 최성희;송택렬
    • 한국군사과학기술학회지
    • /
    • 제18권1호
    • /
    • pp.84-92
    • /
    • 2015
  • This paper proposes a new approach to reduce the target estimation error of the measurement angle, especially applied to the medium and long range surveillance radar. If the target has no maneuver and no change in heading direction for a certain time interval, the predicted angle of interacting multiple model(IMM) from the previous track information can be used to reduce the angle estimation error. The proposed method is simulated in 2 scenarios, a scenario with a non-maneuvering target and a scenario with a maneuvering target. The result shows that the new fusion solution(weighted IMM) with the predicted azimuth and the measured azimuth is worked properly in the two scenarios.

지능형 입력추정에 기반한 상호작용 다중모델 기법을 이용한 기동표적 추적 (Maneuvering Target Tracking Using the IMM method Based on Intelligent Input Estimation)

  • 이범직;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2085-2087
    • /
    • 2003
  • A new interacting multiple model (IMM) method based on intelligent input estimation (IIE) is proposed for tracking a maneuvering target. In the proposed method, the acceleration level of each sub-filter is determined by IIE using the fuzzy system, which is optimized by the genetic algorithm (GA). The tracking performance of the proposed method is compared with those of the input estimation (IE) technique and the adaptive interacting multiple model (AIMM) method in computer simulations.

  • PDF