• Title/Summary/Keyword: Inter-class distance

Search Result 16, Processing Time 0.025 seconds

Face Recognition in Visual and Infra-Red Complex Images (가시광-근적외선 혼합 영상에서의 얼굴인식에 관한 연구)

  • Kim, Kwang-Ju;Won, Chulho
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.8
    • /
    • pp.844-851
    • /
    • 2019
  • In this paper, we propose a loss function in CNN that introduces inter-class amplitudes to increase inter-class loss and reduce intra-class loss to increase of face recognition performance. This loss function increases the distance between the classes and decreases the distance in the class, thereby improving the performance of the face recognition finally. It is confirmed that the accuracy of face recognition for visible light image of proposed loss function is 99.62%, which is better than other loss functions. We also applied it to face recognition of visible and near-infrared complex images to obtain satisfactory results of 99.76%.

Cross Correlation based Signal Classification for Monitoring System of Abnormal Respiratory Status (상관관계 기반 신호 분류를 이용한 비정상 호흡 상태 모니터링 시스템)

  • Lee, Deokwoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.7-13
    • /
    • 2020
  • This paper focuses on detecting abnormal patterns of respiration of humans. In this study, a contact-based device was used to acquire both normal and abnormal respiration signals. To this end, this paper reports the development of a monitoring system to investigate the respiratory status of humans in a normal environment. This work aims to classify the respiratory status, i.e., normal and abnormal status, quantitatively. The respiration signal is acquired using a contact-based medical device (BIOBPAC), and noise reduction is carried out before classifying the respiratory status. To reduce noise, a mixed filter that combines the Savitzky-Golay filter and Median filter is applied to the acquired respiration signals. The inter-class distance is maximized, and the intra-class distance is minimized. The proposed algorithm is straightforward and can be applied to a practical environment. In addition, the experimental results are provided to substantiate the proposed approach.

Improved Classification Algorithm using Extended Fuzzy Clustering and Maximum Likelihood Method

  • Jeon Young-Joon;Kim Jin-Il
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.447-450
    • /
    • 2004
  • This paper proposes remotely sensed image classification method by fuzzy c-means clustering algorithm using average intra-cluster distance. The average intra-cluster distance acquires an average of the vector set belong to each cluster and proportionates to its size and density. We perform classification according to pixel's membership grade by cluster center of fuzzy c-means clustering using the mean-values of training data about each class. Fuzzy c-means algorithm considered membership degree for inter-cluster of each class. And then, we validate degree of overlap between clusters. A pixel which has a high degree of overlap applies to the maximum likelihood classification method. Finally, we decide category by comparing with fuzzy membership degree and likelihood rate. The proposed method is applied to IKONOS remote sensing satellite image for the verifying test.

  • PDF

Reliability of Scapular Downward Rotation Measurement in Subjects With Scapular Downward Rotation Syndrome

  • Choi, Woo-Jeong;Lee, Ji-Hyun;Jeong, Hyo-Jung;Yoon, Tae-Lim;Cynn, Heon-Seock
    • Physical Therapy Korea
    • /
    • v.21 no.3
    • /
    • pp.73-79
    • /
    • 2014
  • The purposes of the current study were to (1) estimate the inter-rater agreement for visual assessment of scapular downward rotation (SDR), (2) develop the scapular downward rotation index (SDRI) as a method to measure SDR objectively and quantitatively, and (3) analyze the intra- and inter-rater reliability of the SDRI. Twenty subjects with scapular downward rotation syndrome (SDRS) were recruited for this study. The visual assessment and the measurement for the SDRI were conducted by two examiners in two sessions each. The SDRI [$(a-b){\div}a{\times}100$] is calculated with the measurement of two linear distances: One is a perpendicular distance from the root of the scapular spine to the thoracic mid-line (a), and the other is a perpendicular distance from the inferior angle of the scapula to the thoracic mid-line (b). Cohen's kappa coefficient was calculated to estimate the inter-rater agreement for visual assessment. Intra-class correlation coefficients (ICCs) with a 95% confidence interval (CI), the standard error of measurement, and minimal detectable differences were calculated to assess intra- and inter-rater reliability of SDR measurement using the SDRI. The results indicated that the kappa coefficient of inter-rater agreement for visual assessment was fair (${\kappa}=.21$). The intra-rater reliability of SDR measurement using the SDRI was excellent for examiner 1 (ICC=.92, 95% CI=.78~.97) and good for examiner 2 (ICC=.82, 95% CI=.55~.93). The inter-rater reliability was moderate (ICC=.73, 95% CI=.32~.89). These findings showed that SDR measurement using the SDRI for subjects with SDRS may be considered reliable and better than the visual assessment.

Scaling of ground motions from Vrancea (Romania) earthquakes

  • Pavel, Florin;Vacareanu, Radu
    • Earthquakes and Structures
    • /
    • v.11 no.3
    • /
    • pp.505-516
    • /
    • 2016
  • This paper evaluates the scaling of ground motions recorded from nine intermediate-depth earthquakes produced in the Vrancea seismic zone in Romania. The considered ground motion database consists of 363 horizontal recordings obtained on soil classes B and C (according to Eurocode 8). An analysis of the inter- and intra-event spectral accelerations is performed in order to gain information regarding the magnitude and distance scaling of the Vrancea ground motions. The analyses reveal a significant influence of the earthquake magnitude and focal depth on the distance scaling and different magnitude and distance scaling for the two soil classes. A linear magnitude and distance scaling is inferred from the results for the range of magnitudes $5.2{\leq}M_W{\leq}7.1$. The results obtained are checked through stochastic simulations and the influence of the stress drop and kappa values on the ground motion levels is assessed. In addition, five ground motion models which were tested in other studies using recordings from Vrancea earthquakes are analyzed in order to evaluate their corresponding host stress drop and kappa. The results show generally a direct connection between the host kappa values and the host stress drop values. Moreover, all the ground motion models depict magnitude dependent host kappa and stress drop levels.

Vehicle Face Re-identification Based on Nonnegative Matrix Factorization with Time Difference Constraint

  • Ma, Na;Wen, Tingxin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2098-2114
    • /
    • 2021
  • Light intensity variation is one of the key factors which affect the accuracy of vehicle face re-identification, so in order to improve the robustness of vehicle face features to light intensity variation, a Nonnegative Matrix Factorization model with the constraint of image acquisition time difference is proposed. First, the original features vectors of all pairs of positive samples which are used for training are placed in two original feature matrices respectively, where the same columns of the two matrices represent the same vehicle; Then, the new features obtained after decomposition are divided into stable and variable features proportionally, where the constraints of intra-class similarity and inter-class difference are imposed on the stable feature, and the constraint of image acquisition time difference is imposed on the variable feature; At last, vehicle face matching is achieved through calculating the cosine distance of stable features. Experimental results show that the average False Reject Rate and the average False Accept Rate of the proposed algorithm can be reduced to 0.14 and 0.11 respectively on five different datasets, and even sometimes under the large difference of light intensities, the vehicle face image can be still recognized accurately, which verifies that the extracted features have good robustness to light variation.

A Study on Detection and Recognition of Facial Area Using Linear Discriminant Analysis

  • Kim, Seung-Jae
    • International journal of advanced smart convergence
    • /
    • v.7 no.4
    • /
    • pp.40-49
    • /
    • 2018
  • We propose a more stable robust recognition algorithm which detects faces reliably even in cases where there are changes in lighting and angle of view, as well it satisfies efficiency in calculation and detection performance. We propose detects the face area alone after normalization through pre-processing and obtains a feature vector using (PCA). The feature vector is applied to LDA and using Euclidean distance of intra-class variance and inter class variance in the 2nd dimension, the final analysis and matching is performed. Experimental results show that the proposed method has a wider distribution when the input image is rotated $45^{\circ}$ left / right. We can improve the recognition rate by applying this feature value to a single algorithm and complex algorithm, and it is possible to recognize in real time because it does not require much calculation amount due to dimensional reduction.

Innovative Technology of Teaching Moodle in Higher Pedagogical Education: from Theory to Pactice

  • Iryna, Rodionova;Serhii, Petrenko;Nataliia, Hoha;Kushevska, Natalia;Tetiana, Siroshtan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.8
    • /
    • pp.153-162
    • /
    • 2022
  • Relevance. Innovative activities in education should be aimed at ensuring the comprehensive development of the individual and professional development of students. The main idea of modular technology is that the student should learn by himself, and the teacher manages his learning activities. The advantage of modular technology is the ability of the teacher to design the study of the material in the most interesting and accessible forms for this part of the study group and at the same time achieve the best learning results. Innovative Moodle technology. it is gaining popularity every day, significantly expanding the space of teaching and learning, allowing students to study inter-faculty university programs in depth. The purpose of this study is to assess the quality of implementation of the e-learning system Moodle. The study was conducted at the South Ukrainian National Pedagogical University named after K. D. Ushinsky in order to identify barriers to the effective implementation of innovative distance learning technologies Moodle and introduce a new model that will have a positive impact on the development of e-learning. Methodology. The paper used a combination of theoretical and empirical research methods. These include: scientific analysis of sources on this issue, which allowed us to formulate the initial provisions of the study; analysis of the results of students 'educational activities; pedagogical experiment; questionnaires; monitoring of students' activities in practical classes. Results. This article evaluates the implementation of the principles of distance learning in the process of teaching and learning at the University in terms of quality. The experiment involved 1,250 students studying at the South Ukrainian National Pedagogical University named after K. D. Ushinsky. The survey helped to identify the main barriers to the effective implementation of modern distance learning technologies in the educational process of the University: the lack of readiness of teachers and parents, the lack of necessary skills in applying computer systems of online learning, the inability to interact with the teaching staff and teachers, the lack of a sufficient number of academic consultants online. In addition, internal problems are investigated: limited resources, unevenly distributed marketing advantages, inappropriate administrative structure, and lack of innovative physical capabilities. The article allows us to solve these problems by gradually implementing a distance learning model that is suitable for any university, regardless of its specialization. The Moodle-based e-learning system proposed in this paper was designed to eliminate the identified barriers. Models for implementing distance learning in the learning process were built according to the CAPDM methodology, which helps universities and other educational service providers develop and manage world-class online distance learning programs. Prospects for further research focus on evaluating students' knowledge and abilities over the next six months after the introduction of the proposed Moodle-based program.

Directional conditionally autoregressive models (방향성을 고려한 공간적 조건부 자기회귀 모형)

  • Kyung, Minjung
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.5
    • /
    • pp.835-847
    • /
    • 2016
  • To analyze lattice or areal data, a conditionally autoregressive (CAR) model has been widely used in the eld of spatial analysis. The spatial neighborhoods within CAR model are generally formed using only inter-distance or boundaries between regions. Kyung and Ghosh (2010) proposed a new class of models to accommodate spatial variations that may depend on directions. The proposed model, a directional conditionally autoregressive (DCAR) model, generalized the usual CAR model by accounting for spatial anisotropy. Properties of maximum likelihood estimators of a Gaussian DCAR are discussed. The method is illustrated using a data set of median property prices across Greater Glasgow, Scotland, in 2008.

Bayesian analysis of directional conditionally autoregressive models (방향성 공간적 조건부 자기회귀 모형의 베이즈 분석 방법)

  • Kyung, Minjung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1133-1146
    • /
    • 2016
  • Counts or averages over arbitrary regions are often analyzed using conditionally autoregressive (CAR) models. The spatial neighborhoods within CAR model are generally formed using only the inter-distance or boundaries between the sub-regions. Kyung and Ghosh (2009) proposed a new class of models to accommodate spatial variations that may depend on directions, using different weights given to neighbors in different directions. The proposed model, directional conditionally autoregressive (DCAR) model, generalized the usual CAR model by accounting for spatial anisotropy. Bayesian inference method is discussed based on efficient Markov chain Monte Carlo (MCMC) sampling of the posterior distributions of the parameters. The method is illustrated using a data set of median property prices across Greater Glasgow, Scotland, in 2008.