• Title/Summary/Keyword: Inter User Interference

Search Result 97, Processing Time 0.019 seconds

A Novel Resource Scheduling Scheme for CoMP Systems

  • Zhou, Wen'an;Liu, Jianlong;Zhang, Yiyu;Yang, Chengyi;Yang, Xuhui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.650-669
    • /
    • 2017
  • Coordinated multiple points transmission and reception (CoMP) technology is used to mitigate the inter-cell interference, and increase cell average user normalized throughput and cell edge user normalized throughput. There are two kinds of radio resource schedule strategies in LTE-A/5G CoMP system, and they are called centralized scheduling strategy and distributed scheduling strategy. The regional centralized scheduling cannot solve interference of inter-region, and the distributed scheduling leads to worse efficiency in the utilize of resources. In this paper, a novel distributed scheduling scheme named 9-Cell alternate authorization (9-CAA) is proposed. In our scheme, time-domain resources are divided orthogonally by coloring theory for inter-region cooperation in 9-Cell scenario [6]. Then, we provide a formula based on 0-1 integer programming to get chromatic number in 9-CAA. Moreover, a feasible optimal chromatic number search algorithm named CNS-9CAA is proposed. In addition, this scheme is expanded to 3-Cell scenario, and name it 3-Cell alternate authorization (3-CAA). At last, simulation results indicate that 9/3-CAA scheme exceed All CU CoMP, 9/3C CU CoMP and DLC resource scheduling scheme in cell average user normalized throughput. Especially, compared with the non-CoMP scheme as a benchmark, the 9-CAA and 3-CAA have improved the edge user normalized throughput by 17.2% and 13.0% respectively.

Self-Organized Resource Allocation for Femtocell Network to Mitigate Downlink Interference

  • Sable, Smita;Bae, Jinsoo;Lee, Kyung-Geun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2410-2418
    • /
    • 2015
  • In this paper, we consider the femto users and their mutual interference as graph elements, nodes and weighted edges, respectively. The total bandwidth is divided into a number of resource blocks (RBs) and these are assigned to the femto user equipment (FUEs) using a graph coloring algorithm. In addition, resources blocks are assigned to the femto users to avoid inter-cell interference. The proposed scheme is compared with the traditional scheduling schemes in terms of throughput and fairness and performance improvement is achieved by exploiting the graph coloring scheme.

Performance of Frequency Planning and Channel Allocation Algorithm for Unified Inter-Cell Interference Avoidance and Cancellation in OFDMA Cellular Systems (OFDMA 셀룰러 시스템에서 셀 간 간섭 회피 및 제거 기법을 적용한 주파수 설계와 채널 할당 알고리즘의 성능)

  • Lee, Jae-Hoon;Kim, Dong-Woo;Lee, Hee-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2A
    • /
    • pp.99-106
    • /
    • 2009
  • In this paper, we propose UCA algorithms that are applied to the unified inter-cell interference mitigation through frequency plannings in OFDMA cellular systems. Under three frequency plannings, UCA algorithms allocate frequency channels to UEs(User Equipments). Proposed UCA algorithms require the information of received signal power from home sector and neighbor sectors respectively. We compare all possible combinations of UCA algorithms and frequency plannings through compute simulation. A primary performance measure is the low 5th percentile of SINR at UEs. The proposed UCA algorithms can avoid the interference to neighbor cells by allocating relatively low transmit power to centrally-located UEs and cancel inter-cell interference at cell-edge UEs by a coordinated symbol repetition. We show that UCA algorithm 2 applied in frequency planning 1 is promising among other combinations of UCA algorithms and frequency palnnings in terms of the low 5th percentile of SINR at UEs.

Scheduling Method based on SINR at Cell Edge for multi-mode mobile device (멀티모드 단말기를 위한 셀 경계 지역에서의 SINR 기반 사용자 선택 방법)

  • Kum, Donghyun;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.3
    • /
    • pp.63-68
    • /
    • 2015
  • We consider a cell edge environment. In cell edge, a user interfered by signal which is generated by a base stations not including the user. In cell edge environment, that is, there are inter cell interference (ICI) as well as multi user interference (MUI). Coordinated multi-point transmission (CoMP) is a technique which mitigates ICI between base stations. In CoMP, therefore, base stations can coordinate with each other by sharing user state information (CSI) in order to mitigate ICI. To improve sum rate performance in CoMP, each base station should generate optimal user group and transmit data to users selected in the optimal user group. In this paper, we propose a user selection algorithm in CoMP. The proposed method use signal to interference plus noise ratio (SINR) as criterion of selecting users. Because base station can't measure accurate SINR of users, in this paper, we estimate SINR equation considering ICI as well as MUI. Also, we propose a user selection algorithm based on the estimated SINR. Through MATAL simulation, we verify that the proposed method improves the system sum rate by an average of 1.5 ~ 3 bps/Hz compared to the conventional method.

Performance of Unified Inter-Cell Interference Avoidance and Cancellation in OFDM Mobile Cellular Systems (OFDM 이동 셀룰러 시스템에서 셀간간섭 회피 및 제거의 결합 성능 분석)

  • Kwon, Jae-Kyun;Lee, Hee-Soo;Ahn, Jae-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.371-376
    • /
    • 2008
  • In this paper, we explain the unified inter-cell interference avoidance and cancellation in OFDM mobile cellular systems. Interference avoidance is used for cell-interior or two-cell-edge users, and interference cancellation is applied to three-cell-edge users. The performance of the unified scheme is evaluated by simplified system simulation. Link simulation results are used in the interpretation of system simulation output. We compare three schemes which are "no interference management," "only interference avoidance," "both avoidance and cancellation." Primary performance measures are the data rate of the 5th percentile user and the mean data rate. Simulation results show that interference management schemes greatly improve the cell edge performance, but slightly reduce the mean data rate. Use of both avoidance and cancelaltion is better than that of only avoidance in terms of the cell edge throughput and the mean data rate.

Frequency allocation method for an inter-cell interference management on 3GPP LTE systems (3GPP LTE 시스템에서 셀간 간섭관리를 위한 주파수 할당 기법)

  • Cho, Kyong-Kuk;Kim, Sang-Goo;Yoon, Dong-Weon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7A
    • /
    • pp.654-659
    • /
    • 2010
  • In this paper, we propose a new frequency allocation method for improvement of edge and low 5% user throughputs. Although many kinds of inter cell interference mitigation methods have been proposed, those have still high complexity of implementation. The proposed algorithm has lower complexity and higher edge user throughput than conventional algorithms since the same frequency allocation method is applied in all cell. Finally, we analyze and compare the edge and low 5% user throughputs using a system level simulation (SLS).

3 User Non-Linear Tomlinson-Harashima Precoding (비선형 3 User Tomlinson-Harashima 전처리 코딩)

  • Abu Hanif, Mohammad;Cho, Kye-Mun;Lee, Moon-Ho;Shin, Tae-Chol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.8
    • /
    • pp.809-812
    • /
    • 2011
  • In this letter, in order to reduce the inter-channel interference at the transmitted side, we design the precoder based on Tomlinson-Harashima coding, which is well know for one kind of non-linear precoding schemes, for 3-user MIMO wireless systems. And its performance is also analyzed in comparison with that of the Dirty Paper Coding based precoder.

Joint Detection Method for Non-orthogonal Multiple Access System Based on Linear Precoding and Serial Interference Cancellation

  • Li, Jianpo;Wang, Qiwei
    • Journal of Information Processing Systems
    • /
    • v.17 no.5
    • /
    • pp.933-946
    • /
    • 2021
  • In the non-orthogonal multiple access (NOMA) system, multiple user signals on the single carrier are superimposed in a non-orthogonal manner, which results in the interference between non-orthogonal users and noise interference in the channel. To solve this problem, an improved algorithm combining regularized zero-forcing (RZF) precoding with minimum mean square error-serial interference cancellation (MMSE-SIC) detection is proposed. The algorithm uses RZF precoding combined with successive over-relaxation (SOR) method at the base station to preprocess the source signal, which can balance the effects of non-orthogonal inter-user interference and noise interference, and generate a precoded signal suitable for transmission in the channel. At the receiver, the MMSE-SIC detection algorithm is used to further eliminate the interference in the signal for the received superimposed signal, and reduce the calculation complexity through the QR decomposition of the matrix. The simulation results show that the proposed joint detection algorithm has good applicability to eliminate the interference of non-orthogonal users, and it has low complexity and fast convergence speed. Compared with other traditional method, the improved method has lower error rate under different signal-to-interference and noise ratio (SINR).

Reduction of Outage Probability due to Handover by Mitigating Inter-cell Interference in Long-Term Evolution Networks

  • Hussein, Yaseein Soubhi;Ali, Borhanuddin Mohd;Rasid, Mohd Fadlee A.;Sali, Aduwati
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.554-563
    • /
    • 2014
  • The burgeoning growth of real-time applications, such as interactive video and VoIP, places a heavy demand for a high data rate and guarantee of QoS from a network. This is being addressed by fourth generation networks such as Long-Term Evolution (LTE). But, the mobility of user equipment that needs to be handed over to a new evolved node base-station (eNB) while maintaining connectivity with high data rates poses a significant challenge that needs to be addressed. Handover (HO) normally takes place at cell borders, which normally suffers high interference. This inter-cell interference (ICI) can affect HO procedures, as well as reduce throughput. In this paper, soft frequency reuse (SFR) and multiple preparations (MP), so-called SFRAMP, are proposed to provide a seamless and fast handover with high throughput by keeping the ICI low. Simulation results using LTE-Sim show that the outage probability and delay are reduced by 24.4% and 11.9%, respectively, over the hard handover method - quite a significant result.

A User Scheduling with Interference-Aware Power Control for Multi-Cell MIMO Networks (다중안테나 다중셀 네트워크에서 간섭인지 기반 전력제어 기술을 이용한 사용자 스케쥴링)

  • Cho, Moon-Je;Ban, Tae-Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1063-1070
    • /
    • 2015
  • In this paper, we propose a distributed user scheduling with transmit power control based on the amount of generating interference to other base stations (BSs) in multi-cell multi-input multi-output (MIMO) networks. Assuming that the time-division duplexing (TDD) system is used, the interference channel from users to other cell BSs is obtained at each user. In the proposed scheduling, each user first generates a transmit beamforming vector by using singular value decompositon (SVD) over MIMO channels and reduces the transmit power if its generating interference to other BSs is larger than a predetermined threshold. Each BS selects the user with the largest effective channel gains among users, which reflects the adjusted power of users. Simulation results show that the proposed technique significantly outperforms the existing user scheduling algorithms.