• 제목/요약/키워드: Intensity of Vortices

검색결과 47건 처리시간 0.019초

가스터빈 연소실 및 블레이드 막냉각에서 와류 및 높은 난류 강도의 유동 효과에 대한 연구 (Effect of Vortex and High Turbulence on Film Cooling for Gas Turbine Combustor and Blades)

  • 조형희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 추계학술대회 논문집 학회본부
    • /
    • pp.471-474
    • /
    • 1996
  • The effects of injection angles between $0^{\circ}$ and $9^{\circ}$, mainstream turbulent intensities between 0.36 percent and 9.3 percent and embedded longitudinal vortices on jets issuing from a single film cooling hole and from a row of inclined holes are investigated. The heat transfer coefficients around film cooling holes are affected greatly by the compound injection angles. The injected jets affected weakly by the freestream turbulence at low level. However, the heat transfer coefficients near the film cooling holes have higher values at a high turbulence intensity. The vortices generated from a delta winglet change the injected jet direction and the kidney-type vortex pattern.

  • PDF

Effect of a vertical guide plate on the wind loading of an inclined flat plate

  • Chung, Kung-Ming;Chou, Chin-Cheng;Chang, Keh-Chin;Chen, Yi-Jun
    • Wind and Structures
    • /
    • 제17권5호
    • /
    • pp.537-552
    • /
    • 2013
  • Wind tunnel experiments were performed to study the wind loads on an inclined flat plate with and without a guide plate. Highly turbulent flow, which corresponded to free-stream turbulence intensity on the flat roof of low-rise buildings, was produced by a turbulence generation grid at the inlet of the test section. The test model could represent a typical solar collector panel of a solar water heater. There are up-stream movements of the separation bubble and side-edge vortices, more intense fluctuating pressure and a higher bending moment in the turbulent flow. A guide plate would result in higher lift coefficient, particularly with an increased projected area ratio of a guide plate to an inclined flat plate. The value of lift coefficient is considerably lower with increased free-stream turbulent intensity.

비선형 k-ε 모형을 이용한 부분 식생 개수로 흐름의 평균흐름 및 난류구조 수치모의 (Numerical Simulation of Mean Flows and Turbulent Structures of Partly-Vegetated Open-Channel Flows using the Nonlinear k-ε Model)

  • 최성욱;최성욱;김태준
    • 대한토목학회논문집
    • /
    • 제34권3호
    • /
    • pp.813-820
    • /
    • 2014
  • 본 연구에서는 부분 식생된 개수로에서 평균흐름 및 난류구조에 관한 수치모의 결과를 제시하였다. 이를 위하여 식생항력항이 포함된 레이놀즈 평균 Navier-Stokes 방정식을 수치해석 하였고 난류 모형으로 비선형 k-${\varepsilon}$ 모형을 이용하였다. 제시된 모형을 Nezu and Onitsuka (2001)의 실험수로에 적용하여 모의된 결과를 실험 계측자료 및 Kang and Choi (2006)의 Reynolds stress model 모의결과와 비교하였다. 실험결과와 비교한 결과에 따르면, 비선형 k-${\varepsilon}$ 모형이 평균흐름의 대체적인 경향을 잘 모의하는 것으로 확인되었다. 또한, 식생 영역과 비식생 영역의 경계면에서 쌍와 (twin vortices)가 생성되고 난류강도와 레이놀즈 응력의 최대점이 위치하는 것을 확인하였다. 레이놀즈 응력에 대해서는 경향은 잘 모의하지만 정량적으로 과소 산정하는 것으로 나타났다.

Experimental study of turbulent flow in a scaled RPV model by PIV technology

  • Luguo Liu;Wenhai Qu;Yu Liu;Jinbiao Xiong;Songwei Li;Guangming Jiang
    • Nuclear Engineering and Technology
    • /
    • 제56권7호
    • /
    • pp.2458-2473
    • /
    • 2024
  • The turbulent flow in reactor pressure vessel (RPV) of pressurized water reactor (PWR) is important for the flow rate distribution at core inlet. Thus, it is vital to study the turbulent flow phenomena in RPV. However, the complicated fluid channel consisted of inner structures of RPV will block or refract the laser sheet of particle image velocimetry (PIV). In this work, the matched index of refraction (MIR) of sodium iodide (NaI) solution and acrylic was applied to support optical path for flow field measurements by PIV in the 1/10th scaled-down RPV model. The experimental results show detailed velocity field at different locations inside the scaled-down RPV model. Some interesting phenomena are obtained, including the non-negligible counterflow at the corner of nozzle edge, the high downward flowing stream in downcomer, large vortices above vortex suppression plate in lower plenum. And the intensity of counterflow and the strength of vortices increase as inlet flow rate increasing. Finally, the case of asymmetry flow was also studied. The turbulent flow has different pattern compared with the case of symmetrical inlet flow rate, which may affect the uniformity of flow distribution at the core inlet.

자유단이 있는 원주의 후류 유동특성에 관한 실험적 연구 (Flow structure of wake behind a finite circular cylinder)

  • 이상준;정용삼
    • 대한기계학회논문집B
    • /
    • 제20권6호
    • /
    • pp.2014-2022
    • /
    • 1996
  • Flow characteristics of the wake behind a finite circular cylinder(FC) mounted on a flat plate was experimentally investigated. Three finite cylinder models having aspect ratio (length to diameter ratio, L/D) of 6,10 and 13 were tested in this study. Wake velocity was measured by a hot-wire anemometry at Reynolds number of 20,000, and the results were compared with those of two-dimensional circular cylinder. As a result, the free-end effect on the wake structure becomes more dominant with decreasing the aspect ratio(L/D) of the finite cylinder. Invisid flow entrained into the wake region decreases the turbulence intensity and periodicity of the vortex shedding due to existence of the free end. From spectral analysis and cross correlation of the velocity signals, vortices having 24Hz frequency characteristics are found in the down wash flow just behind the free end. There exists very complicated flow near the free end due to interaction between the entrained flow and streamwise vortices. Vortex formation region is destroyed significantly in the near wake and shows quite different wake structures from those of 2-D cylinder.

Features of the flow over a finite length square prism on a wall at various incidence angles

  • Sohankar, A.;Esfeh, M. Kazemi;Pourjafari, H.;Alam, Md. Mahbub;Wang, Longjun
    • Wind and Structures
    • /
    • 제26권5호
    • /
    • pp.317-329
    • /
    • 2018
  • Wake characteristics of the flow over a finite square prism at different incidence angles were experimentally investigated using an open-loop wind tunnel. A finite square prism with a width D = 15 mm and a height H = 7D was vertically mounted on a horizontal flat plate. The Reynolds number was varied from $6.5{\times}10^3$ to $28.5{\times}10^3$ and the incidence angle ${\alpha}$ was changed from $0^{\circ}$ to $45^{\circ}$. The ratio of boundary layer thickness to the prism height was about ${\delta}/H=7%$. The time-averaged velocity, turbulence intensity and the vortex shedding frequency were obtained through a single-component hotwire probe. Power spectrum of the streamwise velocity fluctuations revealed that the tip and base vortices shed at the same frequency as that ofspanwise vortices. Furthermore, the results showed that the critical incidence angle corresponding to the maximum Strouhal number and minimum wake width occurs at ${\alpha}_{cr}=15^{\circ}$ which is equal to that reported for an infinite prism. There is a reduction in the size of the wake region along the height of the prism when moving away from the ground plane towards the free end.

나프탈렌승화법을 이용한 터빈 익렬 끝벽에서의 열(물질)전달계수 측정 (Measurements of Endwall Heat(Mass) Transfer Coefficient in a Linear Turbine Cascade Using Naphthalene Sublimation Technique)

  • 이상우;전상배;박병규
    • 대한기계학회논문집B
    • /
    • 제25권3호
    • /
    • pp.356-365
    • /
    • 2001
  • Heat (mass) transfer characteristics have been investigated on the endwall of a large-scale linear turbine cascade. Its profile is based on the mid-span of the first-stage rotor blade in a industrial gas turbine. By using the naphthalene sublimation technique, local heat (mass) transfer coefficients are measured for two different free-stream turbulence intensities of 1.3% and 4.7%. The results show that local heat (mass) transfer Stanton number is widely varied on the endwall, and its distribution depends strongly on the three-dimensional vortical flows such as horseshoe vortices, passage vortex, and corner vortices. From this experiment, severe heat loads are found on the endwall near the blade suction side as well as near the leading and trailing edges of the blade. In addition, the effect of the free-stream turbulence on the heat (mass) transfer is also discussed in detail.

풍력터빈 블레이드 주위 흐름의 유동특성에 대한 실험적 분석 (Experimental Analysis of Flow Characteristics around Wind-Turbine Blades)

  • 이정엽;이상준
    • 한국가시화정보학회지
    • /
    • 제7권2호
    • /
    • pp.64-71
    • /
    • 2010
  • The flow and noise characteristics of wake behind wind-turbine blades have been investigated experimentally using a two-frame particle image velocimetry (PIV) technique. Experiments were carried out in a POSTECH subsonic large wind-tunnel ($1.8^W{\times}1.5^H{\times}4.3^L\;m^3$) with KBP-750D (3-blade type) wind-turbine model at a freestream velocity of $U_o\;=\;15\;m/s$ and a tip speed ratio $\lambda\;=\;6.14$ (2933 rpm). The wind-turbine blades are connected to an AC servo motor, brake, encoder and torque meter to control the rotational speed and to extract a synchronization signal for PIV measurements. The wake flow was measured at four azimuth angles ($\phi\;=\;0^{\circ}$, $30^{\circ}$, $60^{\circ}$ and $90^{\circ}$) of the wind-turbine blade. The dominant flow structure of the wake is large-scale tip vortices. The turbulent statistics such as turbulent intensity are weakened as the flow goes downstream due to turbulent dissipation. The dominant peak frequency of the noise signal is identical to the rotation frequency of blades. The noise seems to be mainly induced by the tip vortices.

원형제트출구 전단류 조절에 따른 제트충돌면에서의 열전달 특성 ( 2 ) - 음향여기된 제트 - (Heat Transfer Characteristics on Impingement Surface with Control of Axisymmetric Jet ( 2 ) - With Acoustic Excitation -)

  • 황상동;이창호;조형희
    • 대한기계학회논문집B
    • /
    • 제24권3호
    • /
    • pp.373-381
    • /
    • 2000
  • The flow and heat transfer characteristics on the impingement surface can be controlled by the change of vortex with the acoustic excitation, because the flow characteristics of an impinging jet are affected strongly by the vortices formed at the jet exit. To investigate the effects of acoustic excitation, we measured the velocity, turbulent intensity distributions for the free jet and local heat transfer coefficients on a impingement surface. As the acoustic excitation, subharmonic frequency of excited frequency plays an important role to the control of the jet flow. If the vortex pairings are promoted by the acoustic excitation, turbulence intensity of the jet flow is increased quickly. On the other hand if the vortex pairings are suppressed, the jet flow has low turbulence intensity at the center of the jet. Therefore, the low heat transfer rates are obtained on the impingement plate for a small nozzle-to-plate distance. However, it has high heat transfer rates at a large distance between the nozzle and plate due to the increasing of potential-core length.

메쉬 스크린을 이용한 충돌제트 열전달 제어에 관한 연구 (Control of Impinging Jet Heat Transfer Using Mesh Screens)

  • 조정원;이상준
    • 대한기계학회논문집B
    • /
    • 제25권5호
    • /
    • pp.722-730
    • /
    • 2001
  • The local heat transfer of an axisymmetric submerged air jet impinging on a heated flat plate is investigated experimentally with the variation of mesh-screen solidity. The screen installed in front of the nozzle exit modifies the flow structure and local heat transfer characteristics. The mean velocity and turbulence intensity profiles of streamwise velocity component are measured using a hot-wire anemometry. The temperature distribution on the heated flat surface is measured with thermocouples. The smoke-wire flow visualization technique was employed to understand the near-field flow structure qualitatively for different mesh screens. Large-scale toroidal vortices and high turbulence intensity enhance the heat transfer rate in the stagnation region. For a higher solidity, turbulence intensity become higher which increases the local heat transfer at small nozzle-to-plate spacings such as L/D<6. The local and average Nusselt numbers of impinging jet from the $\sigma$(sub)s=0.83 screen at L/D=2 are about 5.6∼7.5% and 7.1% larger than those for the case of no screen, respectively. For the nozzle-to-plate spacings larger than 6, however, the turbulence intensities for all tested screens approach to an asymptotic curve and the mean velocity along the jet centerline decreases monotonically. As the nozzle-to-plat spacing increases for high solidity screens, the heat transfer rate decreases due to the reduction in turbulence intensity and jet momentum.