DOI QR코드

DOI QR Code

Numerical Simulation of Mean Flows and Turbulent Structures of Partly-Vegetated Open-Channel Flows using the Nonlinear k-ε Model

비선형 k-ε 모형을 이용한 부분 식생 개수로 흐름의 평균흐름 및 난류구조 수치모의

  • 최성욱 (연세대학교 토목환경공학과) ;
  • 최성욱 (연세대학교 대학원 토목환경공학과) ;
  • 김태준 (연세대학교 토목환경공학과)
  • Received : 2013.12.23
  • Accepted : 2014.04.26
  • Published : 2014.06.01

Abstract

This study presents a numerical modeling of mean flow and turbulence structures of partly-vegetated open-channel flows. For this, Reynolds-averaged Navier-Stokes equations with vegetation drag terms are solved numerically using the non-linear k-${\varepsilon}$ model. The numerical model is applied to laboratory experiments of Nezu and Onitsuka (2001), and simulated results are compared with data from measurement and computations by Kang and Choi's (2006) Reynolds stress model. The simulation results indicate that the proposed numerical model simulates the mean flow well. Twin vortices are found to be generated at the interface between vegetated and non-vegetated zones, where turbulence intensity and Reynolds stress show their maximums. The model simulates the pattern of the Reynolds stress well but under-predicts the intensity of Reynolds stress slightly.

본 연구에서는 부분 식생된 개수로에서 평균흐름 및 난류구조에 관한 수치모의 결과를 제시하였다. 이를 위하여 식생항력항이 포함된 레이놀즈 평균 Navier-Stokes 방정식을 수치해석 하였고 난류 모형으로 비선형 k-${\varepsilon}$ 모형을 이용하였다. 제시된 모형을 Nezu and Onitsuka (2001)의 실험수로에 적용하여 모의된 결과를 실험 계측자료 및 Kang and Choi (2006)의 Reynolds stress model 모의결과와 비교하였다. 실험결과와 비교한 결과에 따르면, 비선형 k-${\varepsilon}$ 모형이 평균흐름의 대체적인 경향을 잘 모의하는 것으로 확인되었다. 또한, 식생 영역과 비식생 영역의 경계면에서 쌍와 (twin vortices)가 생성되고 난류강도와 레이놀즈 응력의 최대점이 위치하는 것을 확인하였다. 레이놀즈 응력에 대해서는 경향은 잘 모의하지만 정량적으로 과소 산정하는 것으로 나타났다.

Keywords

References

  1. Boussinesq, J. (1877). "Essai sur la theorie des eaux courantes." Memoires presentes par divers savants a l'Academie des Sciences, Vol. 23, No. 1, pp. 1-680.
  2. Dunn, C. J. (1966). Experimental determination of drag coefficients in open-channel with simulated vegetation, M.S. Dissertation, University of Illinois at Urbana Champaign, Urbana, IL.
  3. Choi, S. U. and Kang, H. S. (2006). "Numerical investigations of mean flow and turbulence structures of partly-vegetated open-channel flows using the reynolds stress model." Journal of Hydraulic Research, Vol. 55, No. 2, pp. 203-217.
  4. Fischer-Antze, T., Stoesser, T., Bates, P. and Olsen, N. R. B. (2001). "3D numerical modeling of open channel flow with submerged vegetation." Journal of Hydraulic Research, IAHR, Vol. 39, No. 3, pp. 303-310. https://doi.org/10.1080/00221680109499833
  5. Hossain, M. S. and Rodi, W. (1980). "Mathematical modeling of vertical mixing in stratified channel flow." Proceedings of the 2nd Symposium on Stratified Flow, Trondheim, Norway.
  6. Launder, B. E. and Spalding, D. B. (1974). "The numerical computation of turbulent flow." Computational Methods in Applied Mechanics, Vol. 3, pp. 269-289. https://doi.org/10.1016/0045-7825(74)90029-2
  7. Muller, A. and Studerus, X. (1979). "Secondary flow in an open channel." Proceedings of the 18th IAHR Congress, Cagliari, Vol. 3, pp. 19-24.
  8. Naot, D., Nezu, I. and Nakagawa, H. (1996). "Hydrodynamic behavior of partly vegetated open channels." Journal of Hydraulic Engineering, ASCE, Vol. 122, No. 11, pp. 625-633. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:11(625)
  9. Nezu, I. and Nakagawa, H. (1984). "Cellular secondary currents in straight conduit." Journal of Hydraulic Engineering, ASCE, Vol. 110, No. 2, pp. 173-193. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:2(173)
  10. Nezu, I. and Onitsuka, K. (2001). "Turbulent structures in partly vegetated open-channel flows with LDA and PIV measurements." Journal of Hydraulic Research, Vol. 39, No. 6, pp. 629-642. https://doi.org/10.1080/00221686.2001.9628292
  11. Patankar, S. V. (1980). Numerical heat transfer and fluid flow, Hemisphere Publishing Corporation, McGraw Hill Book Company, New York, NY.
  12. Patankar, S. V. and Spalding, D. B. (1972). "A calculation procedure for heat, Mass and momentum transfer in three dimensional parabolic flow." International Journal of Heat and Mass Transfer, Vol. 15, No. 10, pp. 1787-1806. https://doi.org/10.1016/0017-9310(72)90054-3
  13. Shimizu, Y. and Tsujimoto, T. (1993). "Comparison of flood flow structure between compound channel and channel with vegetation zone." Proceedings of 25th IAHR Congress, Delft, The Netherlands.
  14. Speziale, C. G. (1987). "On nonlinear k-l and k-${\varepsilon}$ models of turbulence." Journal of Fluid Mechanics, Vol. 178, pp. 459-475. https://doi.org/10.1017/S0022112087001319
  15. Stoesser, T., Neary, V. and Wilson, C. A. M. E. (2004). "Modeling vegetated channel flows." WSEAS Conference, Corfu Iland, Greece.
  16. Wilson, C. A. M. E., Stoesser, T. and Bates, P. D. (2005). Modeling of open channel flow through vegetation, Computational fluid dynamics: Applications in Environmental Hydraulics, Paul D. Bates, Stuart N. Lane and Robert I. Ferguson ed., John Wiley & Sons, New York, NY.
  17. Xiaohui, S. and Li, C. W. (2002). "Large eddy simulation of free surface turbulent flow in partly vegetated open-channels." Int. J. Numer. Methods Fluids, Vol. 39, pp. 919-937. https://doi.org/10.1002/fld.352

Cited by

  1. Numerical Simulation of Flow Characteristics behind a Circular Patch of Vegetation using a Two-Dimensional Numerical Model vol.48, pp.11, 2015, https://doi.org/10.3741/JKWRA.2015.48.11.891
  2. Numerical simulations of turbulent flow through submerged vegetation using LES vol.16, pp.9, 2015, https://doi.org/10.5762/KAIS.2015.16.9.6305