• Title/Summary/Keyword: Intensity modulated therapy

Search Result 267, Processing Time 0.037 seconds

Effectiveness Assessment on Jaw-Tracking in Intensity Modulated Radiation Therapy and Volumetric Modulated Arc Therapy for Esophageal Cancer (식도암 세기조절방사선치료와 용적세기조절회전치료에 대한 Jaw-Tracking의 유용성 평가)

  • Oh, Hyeon Taek;Yoo, Soon Mi;Jeon, Soo Dong;Kim, Min Su;Song, Heung Kwon;Yoon, In Ha;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.33-41
    • /
    • 2019
  • Purpose : To evaluate the effectiveness of Jaw-tracking(JT) technique in Intensity-modulated radiation therapy(IMRT) and Volumetric-modulated arc therapy(VMAT) for radiation therapy of esophageal cancer by analyzing volume dose of perimetrical normal organs along with the low-dose volume regions. Materials and Method: A total of 27 patients were selected who received radiation therapy for esophageal cancer with using $VitalBeam^{TM}$(Varian Medical System, U.S.A) in our hospital. Using Eclipse system(Ver. 13.6 Varian, U.S.A), radiation treatment planning was set up with Jaw-tracking technique(JT) and Non-Jaw-tracking technique(NJT), and was conducted for the patients with T-shaped Planning target volume(PTV), including Supraclavicular lymph nodes(SCL). PTV was classified into whether celiac area was included or not to identify the influence on the radiation field. To compare the treatment plans, Organ at risk(OAR) was defined to bilateral lung, heart, and spinal cord and evaluated for Conformity index(CI) and Homogeneity index(HI). Portal dosimetry was performed to verify a clinical application using Electronic portal imaging device(EPID) and Gamma analysis was performed with establishing thresholds of radiation field as a parameter, with various range of 0 %, 5 %, and 10 %. Results: All treatment plans were established on gamma pass rates of 95 % with 3 mm/3 % criteria. For a threshold of 10 %, both JT and NJT passed with rate of more than 95 % and both gamma passing rate decreased more than 1 % in IMRT as the low dose threshold decreased to 5 % and 0 %. For the case of JT in IMRT on PTV without celiac area, $V_5$ and $V_{10}$ of both lung showed a decrease by respectively 8.5 % and 5.3 % in average and up to 14.7 %. A $D_{mean}$ decreased by $72.3{\pm}51cGy$, while there was an increase in radiation dose reduction in PTV including celiac area. A $D_{mean}$ of heart decreased by $68.9{\pm}38.5cGy$ and that of spinal cord decreased by $39.7{\pm}30cGy$. For the case of JT in VMAT, $V_5$ decreased by 2.5 % in average in lungs, and also a little amount in heart and spinal cord. Radiation dose reduction of JT showed an increase when PTV includes celiac area in VMAT. Conclusion: In the radiation treatment planning for esophageal cancer, IMRT showed a significant decrease in $V_5$, and $V_{10}$ of both lungs when applying JT, and dose reduction was greater when the irradiated area in low-dose field is larger. Therefore, IMRT is more advantageous in applying JT than VMAT for radiation therapy of esophageal cancer and can protect the normal organs from MLC leakage and transmitted doses in low-dose field.

A Comparative Study on the Head and Neck Radiation Therapy for Dynamic Conformal Arc Therapy and Volumetric Modulated Arc Therapy (두경부 방사선 치료 시 입체조형동적회전조사치료와 용적변조회전조사치료에 관한 연구)

  • Kim, Deok-Ki;Choi, CheonWoong;Choi, Jae-hyock;Won, Hui-su;Park, Cheol-soo
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.6
    • /
    • pp.208-218
    • /
    • 2015
  • Recently, radiation therapy is used in the CT existing conventional two-dimensional radiation image, and set the size and location of the tumor in a manner that the image is going to change the treatment plan. After using the simulation using CT, radiation therapy it is four-dimensional or three-dimensional treatment made possible. and radiation therapy became the more effective ever before. High technology radiation therapy such as the treatment of SRS,IMRT, IGRT, SBRT, is a need to try contemplating the possibility to apply appropriate analysis and situation, so it has its own characteristics. and then it is believed that it is necessary to analyze and try it worries the proper applicability of the situation. The configuration of the various treatment that is applicable in many hospitals is necessary to try to determine how to practically apply the patients. Critical organs surrounding tumor give a small dose to avoid side effects and then the tumor has the therapeutic effect by providing a larger dose than before the radiation treatment.

The Preliminary Results of Intensity-Modulated Radiotherapy for Tonsillar Cancer (편도암에 대한 세기조절방사선치료의 예비적 결과)

  • Park, Geum-Ju;Lee, Sang-Wook;Choi, Eun-Kyung;Kim, Jong-Hoon;Song, Si-Yeol;Youn, Sang-Min;Park, Sung-Ho;Park, Dong-Wook;Ahn, Seung-Do
    • Radiation Oncology Journal
    • /
    • v.27 no.3
    • /
    • pp.120-125
    • /
    • 2009
  • Purpose: We wanted to present the preliminary results of intensity-modulated radiotherapy (IMRT) for the treatment of tonsillar cancer. Materials and Methods: We retrospectively analyzed 12 patients who underwent IMRT for tonsillar cancer at Asan Medical Center between November 2002 and February 2007. Seven patients (58%) received definitive treatment, and five (42%) were treated in the postoperative setting. Among the definitively treated patients, 6 patients received cisplatin-based chemotherapy regimens. Simultaneous modulated accelerated radiation therapy (SMART) was used in nine patients. The prescribed dose was 72 Gy at 2.4 Gy/fraction for the definitively treated cases and 61.6 Gy at 2.2 Gy/fraction for the postoperative cases. The median follow-up period was 34 months. Results: All twelve patients completed treatment without interruption, and eleven showed a complete response. One patient had persistent loco-regional disease after treatment. The three-year estimates of loco-regional control, disease-free survival and overall survival were 91.7%, 91.7%, and 100%. The worst acute mucositis was Grade 1 in four patients, Grade 2 in five patients, Grade 3 in two patients and Grade 4 in one patient. Grade 3 xerostomia was observed in six patients. Conclusion: Intensity-modulated radiotherapy was shown to be a safe and effective treatment modality for tonsillar cancer. Further studies with a larger number of patients and a longer follow-up period are needed to evaluate the ultimate tumor control and late toxicity of IMRT for treating tonsillar cancer.

A Comparison of Field-in-Field Intensity Modulated Radiation Therapy Planning and Conventional Radiation Therapy Planning with Tangential Beam for Breast Cancer (유방암의 접선조사 시 Field-in-Field Intensity Modulated Radiation Therapy와 Conventional Radiation Therapy의 전산화 치료계획에 관한 고찰)

  • Yoo, Soon-Mi;Yeom, Mi-Suk;Kim, Dae-Sup;Back, Geum-Mun;Kwon, Kyeong-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.1
    • /
    • pp.41-46
    • /
    • 2010
  • Purpose: To analyze differences in the dose uniformity for the computed breast radiation therapy planning with tangential beam between conventional RT using wedge filter and FiF-IMRT using multileaf collimator based onsizes and volumes of breasts. Materials and Methods: Thirty breast cancer patients were classified according to the sizes and volumes of the breasts using Eclipse treatment planning system ($Varian^{TM}$, USA, V8.0). Conformity Index and Homogeneity Index were computed along with Dose Volume Histogram. Results: No differencein CI (${\pm}1.2%$) was observed. However, lower mean HI (1.67%) in FiF-IMRT was observed compared to that of the conventional RT. Statically significant (P<0.01) correlation was identified between the values of ${\Delta}HI$ (%) and physical parameters such as breast volumes and separations. Conclusion: Increase in breast volume and separation improves the dose uniformities in computed radiation therapy planning for FiF-IMRT. Physical dimension of the breast should be considered to optimize the compured radiation therapy planning.

  • PDF

The Properties of Beam Intensity Scanner (BInS) for Dose Verification in Intensity Modulated Radiation Therapy (방사선 세기 조절 치료에서 선량을 규명하는 데 사용된 BlnS System의 특성)

  • 박영우;박광열;박경란;권오현;이명희;이병용;지영훈;김근묵
    • Progress in Medical Physics
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • Patient dose verification is one of the most Important responsibilities of the physician in the treatment delivery of radiation therapy. For the task, it is necessary to use an accurate dosimeter that can verify the patient dose profile, and it is also necessary to determine the physical characteristics of beams used in intensity modulated radiation therapy (IMRT) The Beam Intensity Scanner (BInS) System is presented for the dosimetric verification of the two dimensional photon beam. The BInS has a scintillator, made of phosphor Terbium-doped Gadolinium Oxysulphide (Gd$_2$O$_2$S:Tb), to produce fluorescence from the irradiation of photon and electron beams. These fluoroscopic signals are collected and digitized by a digital video camera (DVC) and then processed by custom made software to express the relative dose profile in a 3 dimensional (3D) plot. As an application of the BInS, measurements related to IWRT are made and presented in this work. Using a static multileaf collimator (SMLC) technique, the intensity modulated beam (IMB) is delivered via a sequence of static portals made by controlled leaves. Thus, when static subfields are generated by a sequence of abutting portals, the penumbras and scattered photons of the delivered beams overlap in abutting field regions and this results in the creation of “hot spots”. Using the BInS, inter-step “hot spots” inherent in SMLC are measured and an empirical method to remove them is proposed. Another major MLC technique in IMRT, the dynamic multileaf collimator (DMLC) technique, has different characteristics from SMLC due to a different leaf operation mechanism during the irradiation of photon and electron beams. By using the BInS, the actual delivered doses by SMLC and DMLC techniques are measured and compared. Even if the planned dose to a target volume is equal in our experimental setting, the actual delivered dose by DMLC technique is measured to be larger by 14.8% than that by SMLC, and this is due to scattered photons and contaminant electrons at d$_{max}$.

  • PDF

IMAGING IN RADIATION THERAPY

  • Kim Si-Yong;Suh Tae-Suk
    • Nuclear Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.327-342
    • /
    • 2006
  • Radiation therapy is an important part of cancer treatment in which cancer patients are treated using high-energy radiation such as x-rays, gamma rays, electrons, protons, and neutrons. Currently, about half of all cancer patients receive radiation treatment during their whole cancer care process. The goal of radiation therapy is to deliver the necessary radiation dose to cancer cells while minimizing dose to surrounding normal tissues. Success of radiation therapy highly relies on how accurately 1) identifies the target and 2) aim radiation beam to the target. Both tasks are strongly dependent of imaging technology and many imaging modalities have been applied for radiation therapy such as CT (Computed Tomography), MRI (Magnetic Resonant Image), and PET (Positron Emission Tomogaphy). Recently, many researchers have given significant amount of effort to develop and improve imaging techniques for radiation therapy to enhance the overall quality of patient care. For example, advances in medical imaging technology have initiated the development of the state of the art radiation therapy techniques such as intensity modulated radiation therapy (IMRT), gated radiation therapy, tomotherapy, and image guided radiation therapy (IGRT). Capability of determining the local tumor volume and location of the tumor has been significantly improved by applying single or multi-modality imaging fur static or dynamic target. The use of multi-modality imaging provides a more reliable tumor volume, eventually leading to a better definitive local control. Image registration technique is essential to fuse two different image modalities and has been In significant improvement. Imaging equipments and their common applications that are in active use and/or under development in radiation therapy are reviewed.

Dosimetric Comparison between Intensity Modulated Radiotherapy and 3 Dimensional Conformal Radiotherapy in the Treatment of Rectal Cancer

  • Simson, David K;Mitra, Swarupa;Ahlawat, Parveen;Sharma, Manoj Kumar;Yadav, Girigesh;Mishra, Manindra Bhushan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.11
    • /
    • pp.4935-4937
    • /
    • 2016
  • Objective: To compare dosimetric parameters of 3 dimensional conformal radiotherapy (3 DCRT) and intensity modulated radiotherapy (IMRT) in terms of target coverage and doses to organs at risk (OAR) in the management of rectal carcinoma. Methods: In this prospective study, conducted between August 2014 and March 2016, all patients underwent CT simulation along with a bladder protocol and target contouring according to the Radiation Therapy Oncology Group (RTOG) guidelines. Two plans were made for each patient (3 DCRT and IMRT) for comparison of target coverage and OAR. Result: A total of 43 patients were recruited into this study. While there were no significant differences in mean Planning Target Volume (PTV) D95% and mean PTV D98% between 3 DCRT and IMRT, mean PTV D2% and mean PTV D50% were significantly higher in 3 DCRT plans. Compared to IMRT, 3 DCRT resulted in significantly higher volumes of hot spots, lower volumes of cold spots, and higher doses to the entire OAR. Conclusion: This study demonstrated that IMRT achieves superior normal tissue avoidance (bladder and bowel) compared to 3 DCRT, with comparable target dose coverage.

The dosimetric impact on treatment planning of the Dynamic MLC leaf gap (동적 다엽콜리메이터의 Leaf gap이 전산화 치료계획에 미치는 영향)

  • Kim, Chong Mi;Yun, In Ha;Hong, Dong Gi;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.233-238
    • /
    • 2014
  • Purpose : The Varian's Eclipse radiation treatment planning system is able to correct radiation treatment thought leaf gap which is limitation MLC movement for collision with both MLC. In this study, I'm try to analyze dosimetric effect about the leaf gap in treatment planning system. And then apply to clinical implement. Materials and Methods : The Elclipse version is 10.0. In general, the leaf gap set to 0.05~0.3 mm and must measurement each leaf gap. The leaf gap measured by each LINACs and photons. We applied to measured each leaf gap in IMRT and VMAT. Changing the leaf gap, we evaluated treatment plans by Dmax, CI, etc. Results : When the same plan was evaluated with changing the leaf gap, an increase of 2-5% over the value Dmax, CI increases mm to 0.0~0.50 mm leaf gap. Volumetric modulated and intensity modulated radiation therapy plans all showed the same trend was not found significant between each radiation treatment planning. Conclusion : Generally, the leaf gap setting has a unique measure of the Multileaf collimator. However, the aging of the Multileaf collimator, calibration, and can be changed, after inspection and repair of the lip gap should eventually because these values affect the treatment plan must be applied to the treatment after confirmation. In some cases, may be to maintain the initial setting value of the lip gap, which is undesirable because it can override the influence on the treatment plan.