• Title/Summary/Keyword: Intensity level

Search Result 2,099, Processing Time 0.028 seconds

The Influences of Whole-body Activity on Reaction Time and Mental Work Using Treadmill-eqipped Instrument (Treadmill을 이용한 단시간 전신운동이 반응시간과 정신적 작업에 미치는 영향)

  • 김정만
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.182-187
    • /
    • 2001
  • This paper examines the effects on human reaction time and mental fatigue of changes in the intensity of physical activity. A treadmill-equipped instrument and perception tester were used to attain several levels of physical activity. In this paper, in order to determine the individual levels of physical activity of subjects, Borg-RPE scale, Heart Rate(HR) and Respiratory Quotient(RQ) were used. Also, a reaction test in whole-body activity on treadmill-equipped instrument and an addition test as an indicator of mental fatigue were performed. In the above experiments, the scores obtained in addition test administered before and after Physical activity at each intensity level used. Restricted within the limits of this paper, the results of these tests showed that mental fatigue decreased after physical activity.

  • PDF

Turbulence Intensity Effects on Small Wind Turbine Power Performance (난류강도가 소형 풍력발전기 출력에 미치는 영향)

  • Kim, Seokwoo
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.19-25
    • /
    • 2013
  • Energy generation from an instrumented Skystream 3.7 small wind turbine was used to investigate the effect of ambient turbulence levels on wind turbine power output performance. It is widely known that elevated ambient turbulence level results in decreased energy production, especially for large sized wind turbine. However, over the entire wind speed range from cut in to the rated wind speed, the measured energy generation increased as ambient turbulence levels elevated. The impact degree of turbulence levels on power generation was reduced as measured wind speed approached to the rated wind speed of 13m/s.

Effect of Incidence Angle on the Turbulence Structure in the Wake of a Turbine Rotor Blade (입사각이 터빈 동익 후류의 난류구조에 미치는 영향)

  • Chang, Sung-Il;Lee, Sang-Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.55-62
    • /
    • 2003
  • This paper describes the effect of the incidence angle on the turbulence structure in the wake of a turbine rotor blade at the low inlet free-stream turbulence level. For three incidence angles of -5, 0 and 5 degrees, mid-span energy spectrum as well as mid-span profiles of mean velocity magnitude and turbulence intensity are reported at three downstream locations in the wake. Vortex shedding frequencies are obtained from the energy spectrum. The result shows that as the incidence angle changes from-5 to 5 degrees, the boundary layer on the suction surface tends to be thickened, which results in widening of the wake. Strouhal numbers based on the shedding frequencies have a nearly constant value of 0.3, independent of tested incidence angles.

  • PDF

A Study on Development of the Lightning Warning System (뇌운경보장치 개발에 관한 연구)

  • Kil Gyung-Suk;Song Jae-Yong;Kim Il-Kwon;Moon Seung-Bo;Cha Myung-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.274-277
    • /
    • 2006
  • This paper describes a lighting warning system (LWS) which consists of a corona needle electrode, a low noise differential amplifier, an A/D converter, an one-chip microprocessor, a LCD and alarm devices. The corona needle electrode is used to measure electric field intensity caused by thunderclouds on the ground level. To evaluate the sensitivity of the LWS, calibration experiment was carried out using a round-shape parallel plate electrode system. The theoretical and experimental results show that the LWS can measure electric field intensity over 2 [kV/m].

  • PDF

An Experimental Study on the Light Transmission Characteristics with Oil Contamination (윤활유 오염에 따른 광투과율 변화에 관한 실험적 연구)

  • 조성용;장철주;공호성;윤의성;한흥구
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.287-298
    • /
    • 2001
  • Change in light transmission characteristics caused by various types of oil contaminations was experimentally measured with a built-in type wear monitoring device. Three kinds of iron powders of different size distribution, carbon dust, two kinds of solutions and grease were used for the lest contaminants in this work. Light intensity of the transmitted light was treasured with the contamination level. Results showed that the transmitted light intensity decreased linearly with the contamination concentration in the oil and the slope was affected by the size distribution. Light attenuation was also caused greatly by carbon dust, water contamination and polymeric fibers mainly due to the light absorption. As a result, it was proved that the optical measurement device could be applicable effectively for detecting any significant change iii lubricating oils.

  • PDF

XFEM for fatigue and fracture analysis of cracked stiffened panels

  • Kumar, M.R. Nanda;Murthy, A. Ramachandra;Gopinath, Smitha;Iyer, Nagesh R.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.1
    • /
    • pp.65-89
    • /
    • 2016
  • This paper presents the development of methodologies using Extended Finite Element Method (XFEM) for cracked unstiffened and concentric stiffened panels subjected to constant amplitude tensile fatigue loading. XFEM formulations such as level set representation of crack, element stiffness matrix formulation and numerical integration are presented and implemented in MATLAB software. Stiffeners of the stiffened panels are modelled using truss elements such that nodes of the panel and nodes of the stiffener coincide. Stress Intensity Factor (SIF) is computed from the solutions of XFEM using domain form of interaction integral. Paris's crack growth law is used to compute the number of fatigue cycles up to failure. Numerical investigations are carried out to model the crack growth, estimate the remaining life and generate damage tolerant curves. From the studies, it is observed that (i) there is a considerable increase in fatigue life of stiffened panels compared to unstiffened panels and (ii) as the external applied stress is decreasing number of fatigue life cycles taken by the component is increasing.

A study ell the residual stress in rail by the web saw-cut method (복부절단법에 의한 레일의 잔류응력에 관한 연구)

  • 서정원;구병춘;정우현
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.234-241
    • /
    • 1999
  • Rails have residual stresses produced during manufacturing processes. The residual stresses play all important role on brittle fracture, fatigue strength and derailment by producing cracks in the web of rail. The web saw-cut test is a technique developed to measure the bulk longitudinal residual stress level. It is a simple mettled to estimate a stress intensity factor, $_{4}$ for a web crack by using the radii of curvature of the upper and lower portions of a cut rail. But according to this method, $_{4}$ varies along the rail length because the curvatures along tile rail length vary In this paper, tile residual stress was estimated by Finite Element Method and tile web saw-cut method. In addition tile variation of the residual stress with time was investigated.

  • PDF

Collapse fragility analysis of the soil nail walls with shotcrete concrete layers

  • Bayat, Mahmoud;Emadi, Amin;Kosariyeh, Amir Homayoun;Kia, Mehdi;Bayat, Mahdi
    • Computers and Concrete
    • /
    • v.29 no.5
    • /
    • pp.279-283
    • /
    • 2022
  • The seismic analytic collapse fragility of soil nail wall structures with a shotcrete concrete covering is investigated in this paper. The finite element modeling process has been well described. The fragility function evaluates the link between ground motion intensities and the likelihood of reaching a specific level of damage. The soil nail wall has been subjected to incremental dynamic analysis (IDA) from medium to strong ground vibrations. The nonlinear dynamic analysis of the soil nail wall uses a set of 20 earthquake ground motions with varying PGAs. PGD is utilized as an intensity measure, the numerical findings demonstrate that the soil nailing wall reaction is particularly sensitive to earthquake intensity measure (IM).

p-Version Finite Element Model of Cracked Plates Including Shear Deformation under Flexural Behavior (휨거동을 받는 균열판의 전단변형을 고려한 p-Version 유한요소모델)

  • Lee, C.G.;K.S.Woo;Shin, Y.S.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.16-23
    • /
    • 1993
  • The new p-version crack model is proposed to estimate the bending stress intensity factors of the thick cracked plate under flexure. The proposed model is based on high order theory and $C^{\circ}$-plate element including shear deformation. The displacements fields are defined by integrals of Legerdre polynomials which can be classified into three groups such as basic mode, side mode and internal mode. The computer implementation allows arbitrary variations of p-level up to a maximum value of 10. The bending stress intensity factors are computed by virtual crack extention approach. The effects of ratios of thickness to crack length(h/a), crack length to width(a/W) and boundary conditions are investigated. Very good agreement with the existing solution in the literature are shown for the uncracked plate as well as the cracked plate.

  • PDF

Effect of Exercise Type and Intensity on Insulin Resistance and Cardiovascular Disease Risk Factors in Obese Middle Aged Women (운동 형태와 강도의 차이가 중년비만여성의 인슐린 저항성 및 심혈관질환 위험요인에 미치는 영향)

  • Lee, Dae-Hee;Oh, Du-Hwan;Zhang, Seok-Am;Lee, Jang-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.181-191
    • /
    • 2016
  • This study examined the effects of exercise intensity and type on insulin resistance, cardiovascular disease risk factors, and exercise time. Obese thirty-two subjects (>body fat 30%) were randomly assigned one of four experimental groups: VO2 max 50% aerobic exercise group (MAE, n=8), VO2 max 80% aerobic exercise group (VAE, n=8), VO2 max 50% + resistance exercise group (MARE, n=8), and VO2 max 80% + resistance exercise group (VARE, n=8). Body fat significantly decreased in all groups and insulin resistance decreased significantly in MARE and VARE (p<.05 & p<.01) after exercise. CRP and IL-6 were slightly reduced after exercise, although these did not reach statistical significance, whereas the IL-6 level of the VAE group decreased significantly (p<.05). TNF-${\alpha}$ significantly decreased in the MAE group (p<.05) but significantly increased in the VARE group after exercise (p<.05). For exercise time, higher intensity exercise groups were significantly less than the lower intensity exercise groups (p<.001). These results suggest that body fat is affected by all kinds of exercise intensity and type while CRP is not. Insulin resistance and TNF-${\alpha}$ were affected by exercise type, whereas IL-6, TNF-${\alpha}$, and exercise time were affected by exercise intensity.