• Title/Summary/Keyword: Intensity level

Search Result 2,099, Processing Time 0.026 seconds

The Influence of the Foreign Infringement to the Maritime Economic Sovereignty upon the Rise of Modern Piracy (외세의 '경제 해양주권' 침해가 현대 해적행위 부상에 미치는 영향 : 소말리아, 예멘, 나이지리아 사례를 중심으로)

  • Jung, Man-sup
    • Maritime Security
    • /
    • v.1 no.1
    • /
    • pp.175-214
    • /
    • 2020
  • Previous studies cannot effectively explain the rise of piracy in Somalia and NIgeria. First, there is a lack of explanation for the process that from a small maritime robbery into a org anized pirate g roup. Second, it is difficult to explain the low level of piracy in countries with extreamly poor conditions, from Somalia to Nigeria. In this study, I argue that the more severe foreign countries infringe on economic maritime sovereignty in vulnerable countries, the higher the intensity and frequency of piracy. If the infringement of economic maritime sovereignty caused by foreign groups occurs in a fragile state, the government could not respond to the acts of foreign groups, resulting in increased damage to maritime people, deteriorating the regional economic situation. As hostility grows, a culture favorable to piracy is created, which is actively utilized by local forces to inspire the people's hostility, and a favorable environment for piracy emerges in a way that responds politically to foreign powers. In Somalia and Nigeria, the infringement of economic maritime sovereignty by foreign groups emerged severe. And based on the stagnation of the local economy and hostility toward foreign groups, favorable conditions were formed for piracy, resulting in the rise of piracy. Meanwhile, Somalia's neighbor, one of the most fragile states in the world, Yemen have not suffered piracy. Also, the foreign infringement to the maritime economic sovereignty has rarely been observed.

  • PDF

Seismic fragility analysis of a cemented Sand-gravel dam considering two failure modes

  • Mahmoodi, Khadije;Noorzad, Ali;Mahboubi, Ahmad
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.483-495
    • /
    • 2020
  • Dams are vital infrastructures that are expected to maintain their stability during seismic excitations. Accordingly, cemented material dams are an emerging type, which are being increasingly used around the world owing to benefiting from advantages of both earth-fill and concrete gravity dams, which should be designed safely when subjected to strong ground motion. In the present paper, the seismic performance of a cemented sand and gravel (CSG) dam is assessed using incremental dynamic analysis (IDA) method by accounting for two failure modes of tension cracking and base joint sliding considering the dam-reservoir-foundation interactions. To take the seismic uncertainties into account, the dam is analyzed under a suite of ground motion records and then, the effect of friction angle for base sliding as well as deformability of the foundation are investigated on the response of dam. To carry out the analyses, the Cindere dam in Turkey is selected as a case study, and various limit states corresponding to seismic performance levels of the dam are determined aiming to estimate the seismic fragilities. Based on the results, sliding of the Cindere dam could be serious under the maximum credible earthquake (MCE). Besides, dam faces are mostly to be cracked under such level of intensity. Moreover, the results indicate that as friction angle increases, probability of sliding between dam and foundation is reduced whereas, increases tensile cracking. Lastly, it is observed that foundation stiffening increases the probability of dam sliding but, reduces the tensile damage in the dam body.

Treatment of multiple gingival recessions with xenogeneic acellular dermal matrix compared to connective tissue graft: a randomized split-mouth clinical trial

  • Vincent-Bugnas, Severine;Laurent, Jonathan;Naman, Eve;Charbit, Mathieu;Borie, Gwenael
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.2
    • /
    • pp.77-87
    • /
    • 2021
  • Purpose: The aim of this study was to compare the efficacy of the tunnel technique for root coverage using a new xenogeneic acellular dermal matrix vs. connective tissue grafting (CTG) for the treatment of multiple maxillary adjacent recessions (recession type 1) at 12 months postoperatively. Methods: This study enrolled 12 patients with at least 3 contiguous, bilateral, symmetrical maxillary gingival recessions (i.e., at least 6 recessions per patient). In total, 74 recessions were treated using the modified coronally advanced tunnel (MCAT) technique combined with a novel porcine-derived acellular dermal matrix (PADM) at 37 test sites or CTG at 37 control sites. The following clinical parameters were measured: recession height, clinical attachment level, width of keratinized tissue, probing depth, recession width, gingival thickness, mean root coverage (MRC), and complete root coverage (CRC). Comparisons between test and control groups were made for pain visual analog scale scores at 14 days. Results: At 12 months, the MCAT with PADM (test) yielded a statistically significant improvement in all clinical parameters studied. MRC was significantly higher on the control sides (80.6%±23.7%) than on the test sides (68.8%±23.4%). Similarly, CRC was 48.7%±6.8% on the control sides (CTG), in contrast to 24.3%±8.2% on the test sides (PADM). Statistically significant differences were observed in favor of the control sides for all clinical parameters studied. Nevertheless, the MCAT in adjunction with PADM was clearly superior at reducing mean and maximum patient-reported postoperative pain intensity and pain duration in the first week after surgery. Conclusions: The use of PADM to treat multiple recessions improved clinical parameters at 12 months, but these outcomes were nevertheless poorer than those observed for CTG. However, PADM reduced morbidity, particularly the pain experienced by patients.

Antioxidant Activity of Ethyl Acetate Fraction of the Guzeunggupo-procossed Platycodon grandiflorum A. De Candolle Roots in Caenorhabditis elegans (구증구포 도라지 Ethyl Acetate 분획물의 예쁜 꼬마선충 내의 항산화 효과)

  • Kwon, Kang Mu;Kim, Jun Hyeong;Yang, Jae Heon;Ki, Byeolhui;Hwang, In Hyun;Kim, Dae Keun
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.4
    • /
    • pp.325-331
    • /
    • 2020
  • Through Caenorhabditis elegans model system, the antioxidant activity of methanol extract of the guzeunggupo-processed Platycodon grandiflorum A. De Candolle (Campanulaceae) roots was calculated. Between the methanol extracts of guzeunggupo-processed and non-processed P. grandiflorum roots, the processed P. grandiflorum root showed higher DPPH radical scavenging effect than the non-processed one. The ethyl acetate soluble fraction of the methanol extract of the guzeunggupo-processed P. grandiflorum showed the best DPPH radical scavenging activity. The ethyl acetate fraction of the processed sample was measured for the activities of superoxide dismutase (SOD), catalase, and oxidative stress tolerance by using C. elegans along with reactive oxygen species level. In addition, to confirm the regulation of the stress response gene is responsible for the increased stress tolerance of C. elegans treated by the ethyl acetate fraction of the processed sample, SOD-3 expression was measured using a transgenic strain (CF1553). Consequently, the ethyl acetate fraction of the processed sample, increased SOD and catalase activities, and decreased ROS accumulation in a dose-dependent manner. Furthermore, the ethyl acetate fraction of the processed sample-treated CF1553 worm showed higher SOD-3::GFP intensity than the control worm.

A Comprehensive Study for Two Damage Sites of Human Hair upon UV-B Damage

  • Song, Sang-Hun;Son, Seongkil;Kang, Nae Gyu
    • Korea Journal of Cosmetic Science
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • Protection mechanisms for skin damage of ultraviolet (UV) absorbers in personal care products for protection against UV are well studied, but not for hair protection. The purpose of this study is to describe and compare the changes of physical property produced in human hair by doses of the UV-B exposure causing protein degradation. To observe the change of physical properties in hair, the experimental intensity of UV-B exposure has been established on the basis of statistical data from official meterological administration as daily one hour sunlight exposure for two weeks. Polysilicone-15, ethylhexyl methoxycinnamate (OMC), and octocrylene were employed for UV-B absorber, and those were treated to hair swatch by rubbing wash through shampoo and conditioner. Bending rigidity displayed kinetically successive reduction at high doses of UV exposure up to the 8,000 s, and exhibited different level at each sample of UV-B absorber. However, the values of Bossa Nova Technologies (BNT) for shinning factor were already saturable at the 2,000 s exposure except that treated with polysilicone-15. The differential scanning calorimetry (DSC) to measure a strength of inner protein produces a successive reduction of enthalpy as like a reduction of bending rigidity upon UV exposure. Surface roughness from lateral force microscope (LFM) acquired immediately after UV exposure show a saturable frictional voltage which has been also found in a saturable BNT data as the time of UV exposure increases. Through researching the DSC and the LFM, shinning of hair was much correlated to the protein damage at the surface, and bending rigidity could be regulated by the protein structural damage inside hair. Therefore, the optimization of efficient strategy for simultaneous prevention of hair protein on the surface and internal hair was required to maintain physical properties against UV.

Facial Image Synthesis by Controlling Skin Microelements (피부 미세요소 조절을 통한 얼굴 영상 합성)

  • Kim, Yujin;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.27 no.3
    • /
    • pp.369-377
    • /
    • 2022
  • Recent deep learning-based face synthesis research shows the result of generating a realistic face including overall style or elements such as hair, glasses, and makeup. However, previous methods cannot create a face at a very detailed level, such as the microstructure of the skin. In this paper, to overcome this limitation, we propose a technique for synthesizing a more realistic facial image from a single face label image by controlling the types and intensity of skin microelements. The proposed technique uses Pix2PixHD, an Image-to-Image Translation method, to convert a label image showing the facial region and skin elements such as wrinkles, pores, and redness to create a facial image with added microelements. Experimental results show that it is possible to create various realistic face images reflecting fine skin elements corresponding to this by generating various label images with adjusted skin element regions.

Temperature ranges for survival and growth of juvenile Saccharina sculpera (Laminariales, Phaeophyta) and applications for field cultivation

  • Kim, Soo Hong;Kim, Young Dae;Hwang, Mi Sook;Hwang, Eun Kyoung;Yoo, Hyun Il
    • ALGAE
    • /
    • v.36 no.4
    • /
    • pp.231-240
    • /
    • 2021
  • Saccharina sculpera is highly valued for human consumption and value-added products. However, natural resources of this kelp have decreased sharply and it is in danger of extinction. Resources recovery through cultivation is being trialed to enable the sustainable use of this species. In this study, the temperature range for survival and optimal growth of juvenile S. sculpera was identified and applied to field cultivation. This study investigated the survival and growth of juvenile S. sculpera under six temperatures (i.e., 5, 10, 15, 16, 18, and 20℃) and two light intensities (i.e., 20 and 40 µmol photons m-2 s-1) in an indoor culture experiment. In these experiments, the blade length decreased at 16℃ under the both light intensities. The thalli died at 20℃ and 20 µmol photons m-2 s-1, and at 18-20℃ and 40 µmol photons m-2 s-1. During the field cultivation, early growth of S. sculpera was highest at the 5 m depth and growth decreased as the water depth increased. When the initial rearing depth was maintained without adjustment throughout the cultivation period (from December to October), all the cultivated S. sculpera plants died during August and September. However, S. sculpera plants lowered from 5 to 15 m and grew to 90.8 ± 13.1 cm in July. The seawater temperature at 15 m depth was similar to the upper level of thermal tolerance demonstrated by juvenile S. sculpera in the indoor culture experiments (16℃ or lower). The plants were subsequently lowered to 25 m depth in August, which eventually led to their maturation in October. The present study confirmed that improved growth rates and a delay in biomass loss can be achieved by adjusting the depth at which the seaweeds are grown during the cultivation period. These results will contribute to the establishment of sustainable cultivation systems for S. sculpera.

A Study on the Factors Influencing Job Satisfaction among Delivery Drivers of Online Hypermarket (온라인 대형마트 배송기사의 일자리만족도 영향 요인 연구)

  • Park, Sonhyo;Lee, Young-Min
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.4
    • /
    • pp.665-676
    • /
    • 2022
  • The e-commerce had been expanding in the distribution channels, recently. Then, COVID-19 and social distancing rules led to a surge of online hypermarkets volume. In this study, we examined workplace environments of delivery drivers, firstly. Second, this study was also designed to examine the influencing factors of the perceived working environments change on the job satisfaction, dealing with the recent surge of work. We analyzed 324 data using various ways like descriptive statistics, one-way analysis of variance, factor analysis, and hierarchical regression analysis. The analysis revealed that their job satisfaction was lower than the average score and their working time was too long. In addition, the changes of the workplace environments were divided into labor intensity change and working condition change, which all had a significant effect on job satisfaction. So we should devise some long-term and short-term plans to make the level of job satisfaction among delivery drivers high on workplace environments.

Effects of 630-nm Organic Light-emitting Diodes on Antioxidant Regulation and Aging-related Gene Expression Compared to Light-emitting Diodes of the Same Wavelength

  • Mo, SangJoon;Kim, Eun Young;Ahn, Jin Chul
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.227-235
    • /
    • 2022
  • To investigate the aging-related physiological functions of organic light-emitting diodes (OLEDs), we examined mRNA expression changes in aging-related genes due to oxidative stress inhibition by 630-nm red light OLEDs. As a result of irradiating 630-nm OLED with an intensity of 5 mW/cm2 for 15 min, the viability of dermal fibroblasts significantly increased by 1.3-fold. In addition, reactive oxygen species generated by H2O2 were significantly reduced about 4.9-fold by irradiation with 630-nm OLED. Quantitative reverse-transcription polymerase chain reaction results showed that 630-nm OLEDs altered aging-related gene mRNA expression levels through antioxidant activity. The mRNA expression levels of matrix metalloproteinase1 (MMP1) and MMP9 decreased significantly, by about 2.2- and 2.5-fold, compared to the control group, whereas those of collagen, type I, and alpha 1 increased significantly, by 4.9-fold. The mRNA expression levels of cancer suppression genes p16 and p53 in dermal fibroblasts were also significantly reduced by 630-nm OLED irradiation, by about 1.4- and three-fold, respectively, compared to the control. Overall, it was confirmed that 630-nm OLED irradiation lowered the level of ROS formation induced by H2O2 in dermal fibroblasts, and that this antioxidant effect could regulate the mRNA expression levels of aging- and tumor suppression-related genes. This study shows a link between 630-nm OLED irradiation and anti-aging physiological functions such as antioxidant function, and suggests the potential of OLEDs as a useful light source for skin care.

Experimental investigation on effect of ion cyclotron resonance heating on density fluctuation in SOL at EAST

  • Li, Y.C.;Li, M.H.;Wang, M.;Liu, L.;Zhang, X.J.;Qin, C.M.;Wang, Y.F.;Wu, C.B.;Liu, L.N.;Xu, J.C.;Ding, B.J.;Lin, X.D.;Shan, J.F.;Liu, F.K.;Zhao, Y.P.;Zhang, T.;Gao, X.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.207-219
    • /
    • 2022
  • The suppression of high-intensity blob structures in the scrape-off layer (SOL) by ion-cyclotron range of frequencies (ICRF) power, leading to a decrease in the turbulent fluctuation level, is observed first in the Experimental Advanced Superconducting Tokamak (EAST) experiment. This suppression effect from ICRF power injection is global in the whole SOL at EAST, i.e. blob structures both in the regions that are magnetically connected to the active ICRF launcher and in the regions that are not connected to the active ICRF launcher could be suppressed by ICRF power. However, more ICRF power is required to reach the full blob structure suppression effect in the regions that are magnetically unconnected to the active launcher than in the regions that are magnetically connected to the active launcher. Studies show that a possible reason for the blob suppression could be the enhanced Er × B shear flow in the SOL, which is supported by the shaper radial gradient in the floating potential profiles sensed by the divertor probe arrays with increasing ICRF power. The local RF wave power unabsorbed by the core plasma is responsible for the modification of potential profiles in the SOL regions.