• Title/Summary/Keyword: Intensity forecasting

Search Result 84, Processing Time 0.031 seconds

Multi-task Learning Based Tropical Cyclone Intensity Monitoring and Forecasting through Fusion of Geostationary Satellite Data and Numerical Forecasting Model Output (정지궤도 기상위성 및 수치예보모델 융합을 통한 Multi-task Learning 기반 태풍 강도 실시간 추정 및 예측)

  • Lee, Juhyun;Yoo, Cheolhee;Im, Jungho;Shin, Yeji;Cho, Dongjin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1037-1051
    • /
    • 2020
  • The accurate monitoring and forecasting of the intensity of tropical cyclones (TCs) are able to effectively reduce the overall costs of disaster management. In this study, we proposed a multi-task learning (MTL) based deep learning model for real-time TC intensity estimation and forecasting with the lead time of 6-12 hours following the event, based on the fusion of geostationary satellite images and numerical forecast model output. A total of 142 TCs which developed in the Northwest Pacific from 2011 to 2016 were used in this study. The Communications system, the Ocean and Meteorological Satellite (COMS) Meteorological Imager (MI) data were used to extract the images of typhoons, and the Climate Forecast System version 2 (CFSv2) provided by the National Center of Environmental Prediction (NCEP) was employed to extract air and ocean forecasting data. This study suggested two schemes with different input variables to the MTL models. Scheme 1 used only satellite-based input data while scheme 2 used both satellite images and numerical forecast modeling. As a result of real-time TC intensity estimation, Both schemes exhibited similar performance. For TC intensity forecasting with the lead time of 6 and 12 hours, scheme 2 improved the performance by 13% and 16%, respectively, in terms of the root mean squared error (RMSE) when compared to scheme 1. Relative root mean squared errors(rRMSE) for most intensity levels were lessthan 30%. The lower mean absolute error (MAE) and RMSE were found for the lower intensity levels of TCs. In the test results of the typhoon HALONG in 2014, scheme 1 tended to overestimate the intensity by about 20 kts at the early development stage. Scheme 2 slightly reduced the error, resulting in an overestimation by about 5 kts. The MTL models reduced the computational cost about 300% when compared to the single-tasking model, which suggested the feasibility of the rapid production of TC intensity forecasts.

Thresholds of Rainfall Duration and Intensity for Predicting Abrupt Landslide Occurrence (돌발 산사태 예·경보를 위한 강우기준 설정 연구)

  • Kim, Seong-Pil;Park, Jae-Sung;Bae, Seung-Jong;Heo, Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.4
    • /
    • pp.53-58
    • /
    • 2014
  • The objective of this study is to suggest rainfall threshold for landslide forecasting and warning. For this study, we chose the research area where landslide have occurred. And we performed infiltration-stability analysis with rainfall intensity-duration. As the results of this study, slope stability variation chart with rainfall intensity-duration are established. This kind of chart is believed to be able to be used for forecasting and warning the landslide caused by rainfall.

A study on the forecasting biomass according to the changes in fishing intensity in the Korean waters of the East Sea (한국 동해 생태계의 어획강도 변화에 따른 자원량 예측 연구)

  • LIM, Jung-Hyun;SEO, Young-Il;ZHANG, Chang-Ik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.54 no.3
    • /
    • pp.217-223
    • /
    • 2018
  • Overfishing capacity has become a global issue due to over-exploitation of fisheries resources, which result from excessive fishing intensity since the 1980s. In the case of Korea, the fishing effort has been quantified and used as an quantified index of fishing intensity. Fisheries resources of coastal fisheries in the Korean waters of the East Sea tend to decrease productivity due to deterioration in the quality of ecosystem, which result from the excessive overfishing activities according to the development of fishing gear and engine performance of vessels. In order to manage sustainable and reasonable fisheries resources, it is important to understand the fluctuation of biomass and predict the future biomass. Therefore, in this study, we forecasted biomass in the Korean waters of the East Sea for the next two decades (2017~2036) according to the changes in fishing intensity using four fishing effort scenarios; $f_{current}$, $f_{PY}$, $0.5{\times}f_{current}$ and $1.5{\times}f_{current}$. For forecasting biomass in the Korean waters of the East Sea, parameters such as exploitable carrying capacity (ECC), intrinsic rate of natural increase (r) and catchability (q) estimated by maximum entropy (ME) model was utilized and logistic function was used. In addition, coefficient of variation (CV) by the Jackknife re-sampling method was used for estimation of coefficient of variation about exploitable carrying capacity ($CV_{ECC}$). As a result, future biomass can be fluctuated below the $B_{PY}$ level when the current level of fishing effort in 2016 maintains. The results of this study are expected to be utilized as useful data to suggest direction of establishment of fisheries resources management plan for sustainable use of fisheries resources in the future.

Validations of Typhoon Intensity Guidance Models in the Western North Pacific (북서태평양 태풍 강도 가이던스 모델 성능평가)

  • Oh, You-Jung;Moon, Il-Ju;Kim, Sung-Hun;Lee, Woojeong;Kang, KiRyong
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.1-18
    • /
    • 2016
  • Eleven Tropical Cyclone (TC) intensity guidance models in the western North Pacific have been validated over 2008~2014 based on various analysis methods according to the lead time of forecast, year, month, intensity, rapid intensity change, track, and geographical area with an additional focus on TCs that influenced the Korean peninsula. From the evaluation using mean absolute error and correlation coefficients for maximum wind speed forecasts up to 72 h, we found that the Hurricane Weather Research and Forecasting model (HWRF) outperforms all others overall although the Global Forecast System (GFS), the Typhoon Ensemble Prediction System of Japan Meteorological Agency (TEPS), and the Korean version of Weather and Weather Research and Forecasting model (KWRF) also shows a good performance in some lead times of forecast. In particular, HWRF shows the highest performance in predicting the intensity of strong TCs above Category 3, which may be attributed to its highest spatial resolution (~3 km). The Navy Operational Global Prediction Model (NOGAPS) and GFS were the most improved model during 2008~2014. For initial intensity error, two Japanese models, Japan Meteorological Agency Global Spectral Model (JGSM) and TEPS, had the smallest error. In track forecast, the European Centre for Medium-Range Weather Forecasts (ECMWF) and recent GFS model outperformed others. The present results has significant implications for providing basic information for operational forecasters as well as developing ensemble or consensus prediction systems.

A Comparative Study of the Rainfall Intensity Between Ground Rain Gauge and Weather Radar (지상우량계와 기상레이더 강우강도의 비교연구)

  • Ryu, Chan-Su;Kang, In-Sook;Lim, Jae-Hwan
    • Journal of Integrative Natural Science
    • /
    • v.4 no.3
    • /
    • pp.229-237
    • /
    • 2011
  • Today they use a weather radar with spatially high resolution in predicting rainfall intensity and utilizing the information for super short-range forecast in order to make predictions of such severe meteorological phenomena as heavy rainfall and snow. For a weather radar, they use the Z-R relation between the reflectivity factor(Z) and rainfall intensity(R) by rainfall particles in the atmosphere in order to estimate intensity. Most used among the various Z-R relation is $Z=200R^{1.6}$ applied to stratiform rain. It's also used to estimate basic rainfall intensity of a weather radar run by the weather center. This study set out to compare rainfall intensity between the reflectivity of a weather radar and the ground rainfall of ASOS(Automatic Surface Observation System) by analyzing many different cases of heavy rain, analyze the errors of different weather radars and identify their problems, and investigate their applicability to nowcasting in case of severe weather.

Policy implication of nuclear energy's potential for energy optimization and CO2 mitigation: A case study of Fujian, China

  • Peng, Lihong;Zhang, Yi;Li, Feng;Wang, Qian;Chen, Xiaochou;Yu, Ang
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1154-1162
    • /
    • 2019
  • China is undertaking an energy reform from fossil fuels to clean energy to accomplish $CO_2$ intensity (CI) reduction commitments. After hydropower, nuclear energy is potential based on breadthwise comparison with the world and analysis of government energy consumption (EC) plan. This paper establishes a CI energy policy response forecasting model based on national and provincial EC plans. This model is then applied in Fujian Province to predict its CI from 2016 to 2020. The result shows that CI declines at a range of 43%-53% compared to that in 2005 considering five conditions of economic growth in 2020. Furthermore, Fujian will achieve the national goals in advance because EC is controlled and nuclear energy ratio increased to 16.4% (the proportion of non-fossil in primary energy is 26.7%). Finally, the development of nuclear energy in China and the world are analyzed, and several policies for energy optimization and CI reduction are proposed.

Development of typhoon forecasting system using satellite data

  • Ryu, Seung-Ah;Chung, Hyo-Sang;Lee, Yong-Seob;Suh, Ae-Sook
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.127-131
    • /
    • 1999
  • Typhoons were known by contributing to transporting plus heat or kinetic energy from equatorial region to midlatitude region. Due to the strong damage from typhoon, we acknowledged the theoretical study and the importance of accurate forecast about typhoon. In this study, typhoon forecasting system was developed to search the tracks of past typhoons or to display similar track of past typhoon in comparison with the path of current forecasting typhoon. It was programmed using Interactive Data Language(IDL), which was a complete computing environment for the interactive analysis and visualization of data. Typhoon forecasting system was also included satellite image and auxiliary chart. IR, Water Vapor, Visible satellite images helped users analyze an accurate forecast of typhoon. They were further refined the procedures for generating water vapor winds and gave an initial indication of their utility for numerical weather prediction(NWP), in particular for typhoon track forecasting where they could provide important information. They were also available for its utility in typhoon tracer or intensity.

  • PDF

A Rainfall Forecasting Model for the Ungaged Point of Meteorological Data (기상 자료 미계측 지점의 강우 예보 모형)

  • Lee, Jae Hyoung;Jeon, Ir Kweon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.307-316
    • /
    • 1994
  • The rainfall forecasting model of the short term is improved at the point where meterological data is not gaged. In this study, the adopted model is based on the assumptions for simulation model of rainfall process, meteorological homogeneousness, prediction and estimation of meteorological data. A Kalman Filter technique is used for rainfall forecasting. In the existing models, the equation of the model is non-linear type with regard to rainfall rate, because hydrometer size distribution (HSD) depends on rainfall intensity. The equation is linearized about rainfall rate as HSD is formulated by the function of the water storage in the cloud. And meteorological input variables are predicted by emprical model. It is applied to the storm events over Taech'ong Dam area. The results show that root mean square error between the forecasted and the observed rainfall intensity is varing from 0.3 to 1.01 mm/hr. It is suggested that the assumptions of this study be reasonable and our model is useful for the short term rainfall forecasting at the ungaged point of the meteorological data.

  • PDF

A Study of Forecast System for Clear-Air Turbulence in Korea, Part II: Graphical Turbulence Guidance (GTG) System (한국의 청천난류 예보 시스템에 대한 연구 Part II: Graphical Turbulence Guidance (GTG) 시스템)

  • Kim, Jung-Hoon;Chun, Hye-Yeong;Jang, Wook;Sharman, R.
    • Atmosphere
    • /
    • v.19 no.3
    • /
    • pp.269-287
    • /
    • 2009
  • CAT (clear-air turbulence) forecasting algorithm, the Graphical Turbulence Guidance (GTG) system developed at NCAR (national center for atmospheric research), is evaluated with available observations (e.g., pilot reports; PIREPs) reported in South Korea during the recent 5 years (2003-2008, excluding 2005). The GTG system includes several steps. First, 44 CAT indices are calculated in the domain of the Regional Data Assimilation and Prediction System (RDAPS) analysis data with 30 km horizontal grid spacing provided by KMA (Korean Meteorological Administration). Second, 10 indices that performed ten best forecasting scores are selected. Finally, 10 indices are combined by measuring the score based on the probability of detection, which is calculated using PIREPs exclusively of moderate-or-greater intensity. In order to investigate the best performance of the GTG system in Korea, various statistical examinations and sensitivity tests of the GTG system are performed by yearly and seasonally classified PIREPs. Performances of the GTG system based on yearly distributed PIREPs have annual variations because the compositions of indices are different from each year. Seasonal forecasting is generally better than yearly forecasting, because selected CAT indices in each season represent meteorological condition much more properly than applying the selected CAT indices to all seasons. Wintertime forecasting is the best among the four seasonal forecastings. This is likely due to that the GTG system consists of many CAT indices related to the jet stream, and turbulence associated with the jet stream can be activated mostly in wintertime under strong jet magnitude. On the other hand, summertime forecasting skill is much less than other seasons. Compared with current operational CAT prediction system (KITFA; Korean Integrated Turbulence Forecasting System), overall performance of the GTG system is better when CAT indices are selected seasonally.

The impacts of social exclusion and the need to belong on the affective forecasting of social events (사회적 배척과 소속 욕구가 사회적 사건의 정서 예측에 미치는 영향)

  • Kim, Ae-Ri;Son, Yeong-U;Im, Hye-Bin
    • Science of Emotion and Sensibility
    • /
    • v.17 no.3
    • /
    • pp.83-94
    • /
    • 2014
  • The present study examined the intensity of affective forecasting and the size of affective forecasting errors of people who experienced social exclusion or those high in need to belong. In Particular, a series of studies was designed to explore the moderating role of the types of future events (i.e. social vs. non-social events) in the relationship between social exclusion, the need to belong and affective forecasting. Results indicated that participants who experienced social exclusion or be high in need to belong showed significantly extreme affective ratings on the future social events compared to the future non-social events. Additional results suggested that more social exclusion experiences or higher needs to belong did not affect to the affective ratings on the experienced social events, indicating greater affective forecasting errors of socially excluded people or people with higher need to belong. The implications and limitations of the results were also discussed.