• Title/Summary/Keyword: Intensity Analysis

Search Result 5,117, Processing Time 0.035 seconds

Warranties for Products with Varying Usage Intensity

  • Kim, Jae Soong;Kim, Ji Sung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.64
    • /
    • pp.29-38
    • /
    • 2001
  • Most warranty studies assume that the usage intensity is the same for all buyers. However, in real life the usage intensity varies across the population of buyers. In the general case, one can divide the population into $\kappa$ categories. This has implications for manufacturers of products. Should a manufacturer produce one product and offer different warranties for the $\kappa$ groups or produce different products (one for each group) and offer the same warranty. A warranty cost analysis is needed to choose between these options. The analysis complicated by factors such as adverse selection , buyers attitude to risk and the price structure. In this paper we develop models to study the expected warranty cost for products with free replacement warranty with varying usage intensity. Numerical examples are presented.

  • PDF

Analysis of a Conducting Crack in an Electrostrictive Ceramic Under Combined Electric and Mechanical Loading

  • Beom, Hyeon-Gyu;Jeong, Kyoung-Moon;Jeong, Eun-Do
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1117-1126
    • /
    • 2002
  • A conducting crack in an electrostrictive ceramic under combined electric and mechanical loading is investigated. Analysis based on linear dielectric model predicts that the surfaces of the crack are not open completely but they are contact near the crack tip. The complete solution for the crack with a contact zone in a linear electrostrictive ceramic under combined electric and mechanical loading is obtained by using the complex variable formula. The asymptotic problems for a semi-infinite crack with a partial opening zone as well as for a fully open semi-infinite crack in a nonlinear electrostrictive ceramic are analyzed in order to investigate the effect of the electrical nonlinearity on the stress intensity factor under small scale nonlinear conditions. Particular attention is devoted to a finite crack in the nonlinear electrostrictive ceramic subjected to combined electric and mechanical loading. The stress intensity factor for the finite crack under small scale nonlinear conditions is obtained from the asymptotic analysis.

Experimental Analysis of Arbitrarily Distributed Through Cracks (임의형 분포 관통균열의 실험적 해석)

  • 최선호;정진석;황재석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3105-3114
    • /
    • 1993
  • previously, several basic studies in the experimental analysis of stress intensity factors of cracks by slab analogy have been presented by authors. But, for the application of above mentioned method to the analysis of the arbitrarily distributed cracks, there still is several bottlenecks to be overcome in terms of its experimental process and data treatment. Moreover, authors recently proposed an improved experimental method to use the fixed slab analogy device which has promised more accurate measurement of S.I.F. of small cracks. In this paper, for the completion of slab analogy analysis of distributed cracks, a grating imaginary rotation method is introduced. And, to prove its validity, this combined method is applied to the determination of stress intensity factors of theoretically known distributed cracks. The results show good agreement with the existing theoretical solutions and physical crack propagation tendencies.

A Study on Stress Wave Propagation by Finite Element Analysis (유한요소법에 의한 2차원 응력파 전파 해석에 관한 연구)

  • 황갑운;조규종
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3369-3376
    • /
    • 1994
  • A finite element program for elastic stress wave propagation is developed in order to investigate the shape of stress field and analysis the magnitude of stress wave intensity at time increment. Accuracy and reliance of the finite element analysis are acquired when the element size is smaller than the product of the stress wave speed and the critical value of increasing time step. In the finite element analysis and theoretical solution, the longitudinal stress wave is propagated to the similar direction of impact load, and the stress wave intensity is expressed in terms of the ratio of propagated area. The direction of shear wave is declined at an angle of 45 degrees compared with longitudinal stress wave and the speed of shear wave is half of the longitudinal stress wave.

Treatment of Stainless Steel Cladding in Pressurized Thermal Shock Evaluation: Deterministic Analyses

  • Changheui Jang;Jeong, lll-Seok;Hong, Sung-Yull
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.132-144
    • /
    • 2001
  • Fracture mechanics is one of the major areas of the pressurized thermal shock (PTS) evaluation. To evaluate the reactor pressure vessel integrity associated with PTS, PFM methodology demands precise calculation of temperature, stress, and stress intensity factor for the variety of PTS transients. However, the existence of stainless steel cladding, with different thermal, physical, and mechanical property, at the inner surface of reactor pressure vessel complicates the fracture mechanics analysis. In this paper, treatment schemes to evaluate stress and resulting stress intensity factor for RPV with stainless steel clad are introduced. For a reference transient, the effects of clad thermal conductivity and thermal expansion coefficients on deterministic fracture mechanics analysis are examined.

  • PDF

Numerical analysis of center cracked orthotropic fgm plate: Crack and material axes differ by θ°

  • Kaman, Mete Onur;Cetisli, Fatih
    • Steel and Composite Structures
    • /
    • v.13 no.2
    • /
    • pp.187-206
    • /
    • 2012
  • In this study, fracture analysis of orthotropic FGM (Functionally Graded Material) plate having center crack is performed, numerically. Material axis arbitrarily oriented and there is an angle ${\theta}^{\circ}$ between material and crack axes. Stress intensity factors at the crack tips for Mode I are calculated using Displacement Correlation Method (DCM). In numerical analysis, effects of material properties and variation of angle ${\theta}^{\circ}$ between material and crack axes on the fracture behavior are investigated for four different boundary conditions. Consequently, it is found that the effect of ${\theta}^{\circ}$ on stress intensity factor depends on variation of material properties.

Determination of the Threshold Stress Intensity Factor in Fatigue Crack Growth Test (피로균열성장시험에서 하한계 응력확대계수의 결정)

  • 허성필;석창성;양원호
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.1-6
    • /
    • 2000
  • In fatigue crack growth test, it is important not only to analyze characteristics of fatigue crack growth but also to determine the threshold stress intensity factor, ${\Delta}K_{th}$. which is the threshold value of fatigue crack growth. Linear regression analysis using fatigue test data near the threshold is suggested to determine the ${\Delta}K_{th}$ in the standard test method but the ${\Delta}K_{th}$ can be affected by a fitting method. And there are some limitations on the linear regression analysis in the case of small number of test data near the threshold. The objective of this study is to investigate differences of the ${\Delta}K_{th}$ due to regression analysis method and to evaluate the relative error range of the ${\Delta}K_{th}$ in same fatigue crack growth test data.

  • PDF

Parameter Analysis for Super-Resolution Network Model Optimization of LiDAR Intensity Image (LiDAR 반사 강도 영상의 초해상화 신경망 모델 최적화를 위한 파라미터 분석)

  • Seungbo Shim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.137-147
    • /
    • 2023
  • LiDAR is used in autonomous driving and various industrial fields to measure the size and distance of an object. In addition, the sensor also provides intensity images based on the amount of reflected light. This has a positive effect on sensor data processing by providing information on the shape of the object. LiDAR guarantees higher performance as the resolution increases but at an increased cost. These conditions also apply to LiDAR intensity images. Expensive equipment is essential to acquire high-resolution LiDAR intensity images. This study developed artificial intelligence to improve low-resolution LiDAR intensity images into high-resolution ones. Therefore, this study performed parameter analysis for the optimal super-resolution neural network model. The super-resolution algorithm was trained and verified using 2,500 LiDAR intensity images. As a result, the resolution of the intensity images were improved. These results can be applied to the autonomous driving field and help improve driving environment recognition and obstacle detection performance

Variations of the stress intensity factors for a planar crack parallel to a bimaterial interface

  • Xu, Chunhui;Qin, Taiyan;Yuan, Li;Noda, Nao-Aki
    • Structural Engineering and Mechanics
    • /
    • v.30 no.3
    • /
    • pp.317-330
    • /
    • 2008
  • Stress intensity factors for a planar crack parallel to a bimaterial interface are considered. The formulation leads to a system of hypersingular integral equations whose unknowns are three modes of crack opening displacements. In the numerical analysis, the unknown displacement discontinuities are approximated by the products of the fundamental density functions and polynomials. The numerical results show that the present method yields smooth variations of stress intensity factors along the crack front accurately. The mixed mode stress intensity factors are indicated in tables and figures with varying the shape of crack, distance from the interface, and elastic constants. It is found that the maximum stress intensity factors normalized by root area are always insensitive to the crack aspect ratio. They are given in a form of formula useful for engineering applications.

An Analysis of Trade Intensity and Comparative Advantage after the Enforcement of the Korea's FTA (한국 FTA 발효 후 무역집중과 비교우위에 대한 분석)

  • AHN, Tae-Kun;KIM, Sung-Ryong
    • THE INTERNATIONAL COMMERCE & LAW REVIEW
    • /
    • v.77
    • /
    • pp.195-214
    • /
    • 2018
  • In order to analyze the current status of trade with Korea and FTA partner countries, the Trade Intensity Index and the Market Comparative Advantage index were calculated and analyzed using panel gravity model. In the case of trade, trade intensity index has been strengthened according to each FTA enforecement, and in some cases, trade inensity has been weakened. In the case of the comparative advantage index, there was a case in which the comparative advantage was strengthened or the comparative advantage was not significantly changed according to each Chapter of HS code. This means that the Korea's FTA enforcement effect has not directly affected the increase of the trade intensity and the increase of the market comparative advantage index. The panel gravity model using the trade intensity and the comparative advantage index as the dependent variable and the trade volume between the two countries as the dependent variable was analyzed.

  • PDF