• Title/Summary/Keyword: Intense Pulsed Light Sterilization System

Search Result 4, Processing Time 0.017 seconds

Development of the High Voltage Converter for the Pulsed Light Sterilization (광펄스 살균을 위한 다채널 고전압 컨버터의 개발)

  • Lee, Young-Woo;Kim, Hyung-Won;Choi, Woo-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.6
    • /
    • pp.29-37
    • /
    • 2012
  • As the demand for the fresh non-thermal food is increased, it is required to develop the fast and perfect sterilization method. The conventional sterilization method using ultraviolet lamp has some disadvantages such as imperfect sterilization and longer process time. In this research, IPL(Intense Pulsed Light) sterilization system is introduced to overcome the drawbacks of the conventional system, and suitable power supply architecture for the system is discussed. Since the IPL sterilization system uses Zenon lamps which requires the 600~2,100[V] for the lightning and 16~30[kV] for the trigger, the converter for the system should be able to generate the high voltage and to discharge the large amount of energy instantaneously. In this research a new power system architecture which has a modified forward converter topology with two switches for generating high voltage and a capacitor bank to control the energy for the lightning by switching is introduced.

Contamination level of commercialized pepper and sterilization effect by intense pulsed light in batch system (시중 판매 후추의 오염도 및 회분식 광펄스 처리에 의한 살균 효과)

  • Park, Jihyun;Shin, Jung-Kue
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.525-529
    • /
    • 2016
  • Twenty-nine pepper products commercially available in the market were collected and investigate for contamination levels. Pepper products purchased from traditional markets had a degree of contamination of $10^6-10^7CFU/g$ aerobic bacteria, $10^4-10^5CFU/g$ Bacillus sp., and less than $10^2CFU/g$ yeast and molds. Organic pepper showed a degree of contamination of $10^4$ aerobic bacteria, $10^2-10^3$ Bacillus sp., and less than $10^1$ yeast and molds. Intense pulsed light (IPL) treatment of 10 min (1,000 V, 5 pps and 4 cm sample-to-lamp distance) showed a bacterial death rate of 1.45-1.55 log for whole peppers, and of 0.8-0.85 log for black and white pepper powder. The sterilization rate using IPL was higher than that using other non-thermal sterilization methods, such as ozone treatment or low-pressure discharge plasma sterilization, indicating that the IPL sterilization method may find potential application in the industry. However, further studies may need to be conducted to enhance the effect of sterilization.

Nonthermal Sterilization of Dried Laver by Intense Pulsed Light with Batch System (회분식 광펄스 처리에 의한 마른 김의 비가열 살균)

  • Kim, Ae-Jin;Shin, Jung-Kue
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.778-781
    • /
    • 2014
  • Intense pulsed light (IPL) is a nonthermal technology emerging as an alternative to conventional thermal treatment. The purpose of this study was to investigate the effect of IPL treatment on the microbial inactivation, color alteration, and temperature change of dried laver to evaluate the commercial feasibility of IPL as a sterilization method. IPL treatment (10 min at 1,000 V and 5 pps) resulted in approximately 1.6 log CFU/g decrease in microbial cell viability. After IPL treatment, the surface temperature of dried laver increased by $1.9^{\circ}C$. The color lightness of dried laver increased with increased treatment time, while redness and yellowness decreased. However, these color differences were not significant.

Nonthermal Sterilization of Pathogenic Escherichia coli by Intense Pulsed Light Using a Batch System (회분식 광펄스 처리에 의한 병원성 대장균의 비가열 살균)

  • Kim, Ae-Jin;Shin, Jung-Kue
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.81-86
    • /
    • 2015
  • Intense pulsed light (IPL), a nonthermal technology, has attracted increasing interest as a food processing technology. However, its efficacy in inactivating microorganisms has not been evaluated thoroughly. In this study, we investigated the influence of IPL treatment on the inactivation of Escherichia coli O157:H7 depending on light intensity, treatment time, and pulse number. Increased light intensity from 500 V to 1,000 V, raised the inactivation rate at room temperature. At 1000 V, the cell numbers were reduced by 7.1 log cycles within 120 s. In addition, increased pulse number or decreased distance between the light source and sample surface also led to an increase in the inactivation rate. IPL exposure caused a significant increase in the absorption at 260 nm of the suspending agent used in our experiments. This indicates that IPL-treated cells were damaged, consequently releasing intracellular materials. The growth of IPL-irradiated cells were delayed by about 5 h. The degree of damage to the cells after IPL treatment was confimed by transmission electron microscopy.