• Title/Summary/Keyword: Intelligent transportation

Search Result 1,055, Processing Time 0.025 seconds

Vulnerability Evaluation by Road Link Based on Clustering Analysis for Disaster Situation (재난·재해 상황을 대비한 클러스터링 분석 기반의 도로링크별 취약성 평가 연구)

  • Jihoon Tak;Jungyeol Hong;Dongjoo Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.2
    • /
    • pp.29-43
    • /
    • 2023
  • It is necessary to grasp the characteristics of traffic flow passing through a specific road section and the topological structure of the road in advance in order to quickly prepare a movement management strategy in the event of a disaster or disaster. It is because it can be an essential basis for road managers to assess vulnerabilities by microscopic road units and then establish appropriate monitoring and management measures for disasters or disaster situations. Therefore, this study presented spatial density, time occupancy, and betweenness centrality index to evaluate vulnerabilities by road link in the city department and defined spatial-temporal and topological vulnerabilities by clustering analysis based on distance and density. From the results of this study, road administrators can manage vulnerabilities by characterizing each road link group. It is expected to be used as primary data for selecting priority control points and presenting optimal routes in the event of a disaster or disaster.

Development of a Speed Prediction Model for Urban Network Based on Gated Recurrent Unit (GRU 기반의 도시부 도로 통행속도 예측 모형 개발)

  • Hoyeon Kim;Sangsoo Lee;Jaeseong Hwang
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.103-114
    • /
    • 2023
  • This study collected various data of urban roadways to analyze the effect of travel speed change, and a GRU-based short-term travel speed prediction model was developed using such big data. The baseline model and the double exponential smoothing model were selected as comparison models, and prediction errors were evaluated using the RMSE index. The model evaluation results revealed that the average RMSE of the baseline model and the double exponential smoothing model were 7.46 and 5.94, respectively. The average RMSE predicted by the GRU model was 5.08. Although there are deviations for each of the 15 links, most cases showed minimal errors in the GRU model, and the additional scatter plot analysis presented the same result. These results indicate that the prediction error can be reduced, and the model application speed can be improved when applying the GRU-based model in the process of generating travel speed information on urban roadways.

Evaluation of LDM (Local Dynamic Map) Service Based on a Role in Cooperative Autonomous Driving with a Road (자율협력주행을 위한 역할 기반 동적정보 서비스 평가 방법)

  • Roh, Chang-Gyun;Kim, Hyoungsoo;Im, I-Jeong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.258-272
    • /
    • 2022
  • The technology implementation method was diversified into an 'autonomous cooperative driving' method to overcome the limitations of a stand-alone autonomous vehicle with vehicle sensor-based autonomous driving. The autonomous cooperative driving method involves exchanging information between roadside infrastructure and autonomous vehicles. In this process, the concept of dynamic information (LDM), a target of cooperation, was established. But, evaluation methods and standards for dynamic information have not been established. Therefore, this study, a dynamic information evaluation method based on information on pedestrians within the moving objects. In addition, autonomous cooperative driving was demonstrated, and dynamic information was also verified through the evaluation method. The significance of this study is that it established the dynamic information evaluation methodology for autonomous cooperative driving for the first time. Based on this, this study is expected to contribute to the application of safe autonomous cooperative driving technology to the field.

Development of Traffic Situation Integrated Monitoring Indicators Combining Traffic and Safety Characteristics (교통소통과 안전 특성을 결합한 교통상황 모니터링 지표 개발)

  • Young-Been Joo;Jun-Byeong Chae;Jae-Seong Hwang;Choul-Ki Lee;Sang-Soo Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.1
    • /
    • pp.13-25
    • /
    • 2024
  • In traffic management, gaps in understanding traffic conditions continue to exist. While the self-belonging problem indicator develops relative to speed, belonging, and self-based relative inclination, it does not apply elimination criteria that may indicate situations that contrast with attribute-specific problems. In this study, we develop integrated indicators that specify communication situations and safety levels for modeling. We review indicators of changes in traffic conditions and raise safety issues, reviewing the indicators so that ITS data can be applied, analyzing the relationships between indicators through factor analysis. We develop combined, integrated indicators that can show changes and stability in traffic situations and that can be applied in traffic information centers to contribute to the development of a traffic environment that can monitor related traffic conditions.

Effect of Attitudinal Factors on Stated Preference of Low-carbon Transportation Services (개인성향 요인이 탄소저감형 교통서비스 잠재선호에 미치는 영향에 관한 연구)

  • Yoonhee Lee;Gyeongjae Lee;Sangho Choo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.49-65
    • /
    • 2023
  • In response to the growing global concern for the environment, the international community has recently committed to achieving 'carbon neutrality.' As a result, numerous studies have been conducted on mode choice models that include carbon emissions as a variable. However, few studies have established a correlation between individual preferences and carbon emissions. In this study, a new mode of transportation named sustainable public transit (SPT), incorporating carbon-reducing transport options like electric scooters, is proposed. Analyzing the individual preferences of commuters on carbon emissions through factor analysis, a stated preference (SP) survey was conducted. A mode choice model for SPT was constructed using multinomial logit models. The results of the analysis showed that gender, income, and specific preferences, such as a passion for exploring new routes, a preference for intermodal transfers, knowledge of carbon reduction, and carbon reduction practices, significantly influence latent preferences for SPT. Therefore, this study is significant as it considers carbon emissions as an attribute variable during the construction of mode choice models and reflects the individual preference variables associated with carbon reduction.

Federated Learning-based Route Choice Modeling for Preserving Driver's Privacy in Transportation Big Data Application (교통 빅데이터 활용 시 개인 정보 보호를 위한 연합학습 기반의 경로 선택 모델링)

  • Jisup Shim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.157-167
    • /
    • 2023
  • The use of big data for transportation often involves using data that includes personal information, such as the driver's driving routes and coordinates. This study explores the creation of a route choice prediction model using a large dataset from mobile navigation apps using federated learning. This privacy-focused method used distributed computing and individual device usage. This study established preprocessing and analysis methods for driver data that can be used in route choice modeling and compared the performance and characteristics of widely used learning methods with federated learning methods. The performance of the model through federated learning did not show significantly superior results compared to previous models, but there was no substantial difference in the prediction accuracy. In conclusion, federated learning-based prediction models can be utilized appropriately in areas sensitive to privacy without requiring relatively high predictive accuracy, such as a driver's preferred route choice.

Effect Analysis of Public Data-Based Automatic Traffic Enforcement Camera Installation Using the Comparison Group Method (비교그룹방법을 이용한 공공데이터 기반 교통단속장비 사고감소 효과분석)

  • Yunseob Lee;Yohee Han;Youngchan Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.168-181
    • /
    • 2023
  • This study analyzed the effects of traffic enforcement on accident reduction. The results revealed a significant reduction in both overall accidents (28.53%) and fatal accidents (39.44%). Notably, enforcement equipment targeting speed limits of 30 km/h and 50 km/h demonstrated similar accident reduction rates of 42.23% and 25.85%, respectively. However, variations were observed based on accident types and types of traffic violations. Therefore, it is evident that enforcement equipment yields distinct accident reduction effects depending on speed limits and types of traffic accidents. This finding underscores the potential for making informed policy decisions to enhance traffic safety measures.

Proposal and Throughput Analysis of a Management Scheme for MTC Device Clustering Service (MTC 장치 클러스터링 서비스 관리 방안 제안 및 성능분석)

  • Kim, Yeon Geun;Min, Sang Won
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.1
    • /
    • pp.157-165
    • /
    • 2017
  • Intelligent transportation systems are currently being developed for elemental technology development of cooperative intelligent transport systems, which enable vehicles to communicate with each other or reduce the risk of traffic accidents, We have been defining and standardizing services according to the purpose of solving traffic safety problems depending on countries. Therefore, in this study, the developed countries of V2X(vehicle-to-everything) based on USA, Europe, Japan, etc., analyzed the service cases selected in the field demonstration stage after completion of the element technology devanalyzed the service cases selected in the field demonstration stage after completion of the element technology development, and to suggest the direction of futureelopment, and to suggest the direction of future policy direction.

Mobility-Based Clustering Algorithm for Multimedia Broadcasting over IEEE 802.11p-LTE-enabled VANET

  • Syfullah, Mohammad;Lim, Joanne Mun-Yee;Siaw, Fei Lu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1213-1237
    • /
    • 2019
  • Vehicular Ad-hoc Network (VANET) facilities envision future Intelligent Transporting Systems (ITSs) by providing inter-vehicle communication for metrics such as road surveillance, traffic information, and road condition. In recent years, vehicle manufacturers, researchers and academicians have devoted significant attention to vehicular communication technology because of its highly dynamic connectivity and self-organized, decentralized networking characteristics. However, due to VANET's high mobility, dynamic network topology and low communication coverage, dissemination of large data packets (e.g. multimedia content) is challenging. Clustering enhances network performance by maintaining communication link stability, sharing network resources and efficiently using bandwidth among nodes. This paper proposes a mobility-based, multi-hop clustering algorithm, (MBCA) for multimedia content broadcasting over an IEEE 802.11p-LTE-enabled hybrid VANET architecture. The OMNeT++ network simulator and a SUMO traffic generator are used to simulate a network scenario. The simulation results indicate that the proposed clustering algorithm over a hybrid VANET architecture improves the overall network stability and performance, resulting in an overall 20% increased cluster head duration, 20% increased cluster member duration, lower cluster overhead, 15% improved data packet delivery ratio and lower network delay from the referenced schemes [46], [47] and [50] during multimedia content dissemination over VANET.

Value Analysis of User Satisfaction by VMS Traffic Information Using Contingent Value Method (조건부가치평가법을 이용한 VMS 교통정보 제공에 따른 이용자만족도 가치 산정)

  • Yeon, Bok-Mo;Hong, Ji-Yeon;Lee, Su-Beom;Lim, Joon-Bum;Moon, Byeong-Sup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.2
    • /
    • pp.12-22
    • /
    • 2010
  • The variable message sign(VMS) is a facility to smoothen traffic flows and enable safe passing by providing real-time necessary information on roads, weather, transportation, and traffic regulations. The VMS also solves a feeling of uneasiness and gives a sense of psychological security by providing information to drivers. However, the VMS has a strong character of being a non-market product but a public product, so it has not normally been evaluated for its value. This research has evaluated a value of satisfaction level for traffic information users, using a contingent valuation method(CVM). As a result of evaluating the value of satisfaction level for users through division into an urban roadway and an urban highway for the cities where an intelligent transportation system(ITS) has been established, the urban highway had a value of 96.7 won/system and the urban roadway had a value of 76.3 won/system.