• Title/Summary/Keyword: Intelligent room

Search Result 78, Processing Time 0.032 seconds

Development of e-learning support platform through real-time two-way communication (실시간 양방향 소통을 통한 이러닝 학습 지원 플랫폼의 구축)

  • Kim, Eun-Mi;Choi, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.249-254
    • /
    • 2019
  • The concept of 'Edu-Tech', which is rapidly reorganized around e-Learning, has been spreading along with the development of intelligent information technology according to the fourth industrial revolution such as Artificial Intelligence (AI), Internet of Things (IoT), BigData. Currently, leading companies are conducting online education services, but real-time two-way communication is difficult. In addition, in the case of off-line class, there are many students, and not only the time is limited, but also they often miss the opportunities to ask questions. In order to solve these problems, this paper develops a real - time interactive question and answer management system that can freely questions both on - line and off - line by combining the benefits of offline instant answers and the advantages of online openness. The developed system is a real-time personalized education system that enables the respondent to check the situation of the questioner in real time and provide a customized answer according to the inquirer's request. In addition, by measuring and managing the system usage time in seconds, the questioner and the respondent can efficiently utilize the system.

A Study on Design of Agent based Nursing Records System in Attending System (에이전트기반 개방병원 간호기록시스템 설계에 관한 연구)

  • Kim, Kyoung-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.73-94
    • /
    • 2010
  • The attending system is a medical system that allows doctors in clinics to use the extra equipment in hospitals-beds, laboratory, operating room, etc-for their patient's care under a contract between the doctors and hospitals. Therefore, the system is very beneficial in terms of the efficiency of the usage of medical resources. However, it is necessary to develop a strong support system to strengthen its weaknesses and supplement its merits. If doctors use hospital beds under the attending system of hospitals, they would be able to check a patient's condition often and provide them with nursing care services. However, the current attending system lacks delivery and assistance support. Thus, for the successful performance of the attending system, a networking system should be developed to facilitate communication between the doctors and nurses. In particular, the nursing records in the attending system could help doctors monitor the patient's condition and provision of nursing care services. A nursing record is the formal documentation associated with nursing care. It is merely a data repository that helps nurses to track their activities; nursing records thus represent a resource of primary information that can be reused. In order to maximize their usefulness, nursing records have been introduced as part of computerized patient records. However, nursing records are internal data that are not disclosed by hospitals. Moreover, the lack of standardization of the record list makes it difficult to share nursing records. Under the attending system, nurses would want to minimize the amount of effort they have to put in for the maintenance of additional records. Hence, they would try to maintain the current level of nursing records in the form of record lists and record attributes, while doctors would require more detailed and real-time information about their patients in order to monitor their condition. Therefore, this study developed a system for assisting in the maintenance and sharing of the nursing records under the attending system. In contrast to previous research on the functionality of computer-based nursing records, we have emphasized the practical usefulness of nursing records from the viewpoint of the actual implementation of the attending system. We suggested that nurses could design a nursing record dictionary for their convenience, and that doctors and nurses could confirm the definitions that they looked up in the dictionary through negotiations with intelligent agents. Such an agent-based system could facilitate networking among medical institutes. Multi-agent systems are a widely accepted paradigm for the distribution and sharing of computation workloads in the scientific community. Agent-based systems have been developed with differences in functional cooperation, coordination, and negotiation. To increase such communication, a framework for a multi-agent based system is proposed in this study. The agent-based approach is useful for developing a system that promotes trade-offs between transactions involving multiple attributes. A brief summary of our contributions follows. First, we propose an efficient and accurate utility representation and acquisition mechanism based on a preference scale while minimizing user interactions with the agent. Trade-offs between various transaction attributes can also be easily computed. Second, by providing a multi-attribute negotiation framework based on the attribute utility evaluation mechanism, we allow both the doctors in charge and nurses to negotiate over various transaction attributes in the nursing record lists that are defined by the latter. Third, we have designed the architecture of the nursing record management server and a system of agents that provides support to the doctors and nurses with regard to the framework and mechanisms proposed above. A formal protocol has also been developed to create and control the communication required for negotiations. We verified the realization of the system by developing a web-based prototype. The system was implemented using ASP and IIS5.1.

Ferromagnetism and Anomalous Hall Effect of $TiO_2$-based superlattice films for Dilute Magnetic Semiconductor Applications

  • Jiang, Juan;Seong, Nak-Jin;Jo, Young-Hun;Jung, Myung-Hwa;Yang, Jun-Mo;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.41-41
    • /
    • 2007
  • For use in spintronic materials, dilute magnetic semiconductors (DMS) are under consideration as spin injectors for spintronic devices[l]. $TiO_2$-based DMS doped by a cobalt, iron, and manganese et al. was recently reported to show ferromagnetic properties, even at temperatures above 300K and the magnetic ordering was explained in terms of carrier-induced ferromagnetism, as observed for a III-V based DMS. An anomalous Hall effect (AHE) and co-occurance of superparamagnetism in reduced Co-doped rutile $TiO_{2-\delta}$ films have also been reported[2]. Metal segregation in the reduced metal-doped rutile $TiO_2-\delta$ films still remains as problems to solve the intrinsic DMS properties. Superlattice films have been proposed to get dilute magnetic semiconductor (DMS) with intrinsicroom-temperature ferromagnetism. For a $TiO_2$-based DMS superlattice structure, each layer was alternately doped by two different transition metals (Fe and Mn) and deposited to a thickness of approximately $2.7\;{\AA}$ on r-$Al_2O_3$(1102) substrates by pulsed laser deposition. The r-$Al_2O_3$(1102) substrates with atomic steps and terrace surface were obtained by thermal annealing. Samples of $Ti_{0.94}Fe_{0.06}O_2$(TiFeO), $Ti_{0.94}Mn_{0.06}O_2$(TiMnO), and $Ti_{0.94}(Fe_{0.03}Mn_{0.03})O_2$ show a low remanent magnetization and coercive field, as well as superparamagnetic features at room temperature. On the other hand, superlattice films (TiFeO/TiMnO) show a high remanent magnetization and coercive field. An anomalous Hall effect in superlattice films exhibits hysisteresis loops with coercivities corresponding to those in the ferromagnetic Hysteresis loops. The superlattice films composed of alternating layers of $Ti_{0.94}Fe_{0.06}O_2$ and $Ti_{0.94}Mn_{0.06}O_2$ exhibit intrinsic ferromagnetic properties for dilute magnetic semiconductor applications.

  • PDF

On Building the Solar Dataset Form using the Kaggle Platform: The applicability of Machine Learning (캐글 플랫폼 활용한 태양광 데이터셋 형태 구축: 머신 러닝의 적용 가능성)

  • Ko, Ju-won;Park, Jung-jin;Park, Jin-woo;Oh, Do-hee;Kim, Mincheol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.255-258
    • /
    • 2022
  • As environmental pollution continues, attention on renewable energy is on the constant rise in recent days. Although various kinds of renewable energy such as solar, wind power and biomass energy have been generated in Jeju, opening and analyzing cases on related data seem insufficient. Therefore, this study is being conducted to deduce the variables which have high relation with solar panel&s output and to understand machine learning methods that can be applied to solar power generation data by utilizing Kaggle platform, which is actively used by a number of scientists. Then, it is planned to propose a form of solar power generation dataset by researching machine learning methods that could be applied to the data. To be specific, analyzing solar power generation data with the Kaggle platform, this study will provide complements on gathering solar power data in Jeju. This study is anticipated to be utilized on data analysis for developing the solar power industry in Jeju. That is, this study is expected to reveal the room for improvement inherent in existing open datasets in Jeju, so that they could be constructed in a suitable form for machine learning for AI analytics. Through this process, a method to increase efficiency of solar power generation is anticipated to be prepared.

  • PDF

Effectiveness Evalution of 18F-FDG Auto Dispenser (RIID: Radiopharmaceutical Intelligent Dispenser) (18F-FDG 자동분주기 사용에 따른 유용성 평가)

  • Yoo, Moon-Gon;Moon, Jae-Seung;Kim, Su-Geun;Shin, Min-Yong;Kim, Seung-Chul;Lee, Tea-hun;An, Sung-Hyeun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.2
    • /
    • pp.79-83
    • /
    • 2018
  • Purpose $^{18}F-FDG$, which is commonly used in PET-CT examinations, is low in capacity and it is difficult to keep the amount of radioactivity busy when the specific activity is high, increasing the amount of space dose and radioactive contamination in the distribution room. Therefore, while evaluating the actual dose administered to patients during the manual dispense process, the medical institution intends to assess the usefulness of the auto dispenser by comparing the differences from the actual dose administered to the patient using the new automatic dispense. Materials and Methods From July 2016 to December 2016, 846 patients were manually administered by workers using $^{18}F-FDG$ and $^{18}F-FDG$ 906 patients were using auto dispenser from July 2017 to December 2017. Results Capacity administered to patients during the manual dispense averaged $35.41{\pm}27.79%$ compared to the recommended dose, and the auto dispenser process showed a small difference of $-2.15{\pm}3.99%$ compared to the recommended dose(p<0.05). Conclusion Working people did not have to touch radioactive medicines directly while they were busy in the auto dispenser, and because of the availability of other tasks far away, the time and distance to receive the exposure were also advantageous. It is believed that future use by many medical institutions will not only reduce the dose to patients but also help reduce the exposure dose to workers.

An Analytical Approach Using Topic Mining for Improving the Service Quality of Hotels (호텔 산업의 서비스 품질 향상을 위한 토픽 마이닝 기반 분석 방법)

  • Moon, Hyun Sil;Sung, David;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.21-41
    • /
    • 2019
  • Thanks to the rapid development of information technologies, the data available on Internet have grown rapidly. In this era of big data, many studies have attempted to offer insights and express the effects of data analysis. In the tourism and hospitality industry, many firms and studies in the era of big data have paid attention to online reviews on social media because of their large influence over customers. As tourism is an information-intensive industry, the effect of these information networks on social media platforms is more remarkable compared to any other types of media. However, there are some limitations to the improvements in service quality that can be made based on opinions on social media platforms. Users on social media platforms represent their opinions as text, images, and so on. Raw data sets from these reviews are unstructured. Moreover, these data sets are too big to extract new information and hidden knowledge by human competences. To use them for business intelligence and analytics applications, proper big data techniques like Natural Language Processing and data mining techniques are needed. This study suggests an analytical approach to directly yield insights from these reviews to improve the service quality of hotels. Our proposed approach consists of topic mining to extract topics contained in the reviews and the decision tree modeling to explain the relationship between topics and ratings. Topic mining refers to a method for finding a group of words from a collection of documents that represents a document. Among several topic mining methods, we adopted the Latent Dirichlet Allocation algorithm, which is considered as the most universal algorithm. However, LDA is not enough to find insights that can improve service quality because it cannot find the relationship between topics and ratings. To overcome this limitation, we also use the Classification and Regression Tree method, which is a kind of decision tree technique. Through the CART method, we can find what topics are related to positive or negative ratings of a hotel and visualize the results. Therefore, this study aims to investigate the representation of an analytical approach for the improvement of hotel service quality from unstructured review data sets. Through experiments for four hotels in Hong Kong, we can find the strengths and weaknesses of services for each hotel and suggest improvements to aid in customer satisfaction. Especially from positive reviews, we find what these hotels should maintain for service quality. For example, compared with the other hotels, a hotel has a good location and room condition which are extracted from positive reviews for it. In contrast, we also find what they should modify in their services from negative reviews. For example, a hotel should improve room condition related to soundproof. These results mean that our approach is useful in finding some insights for the service quality of hotels. That is, from the enormous size of review data, our approach can provide practical suggestions for hotel managers to improve their service quality. In the past, studies for improving service quality relied on surveys or interviews of customers. However, these methods are often costly and time consuming and the results may be biased by biased sampling or untrustworthy answers. The proposed approach directly obtains honest feedback from customers' online reviews and draws some insights through a type of big data analysis. So it will be a more useful tool to overcome the limitations of surveys or interviews. Moreover, our approach easily obtains the service quality information of other hotels or services in the tourism industry because it needs only open online reviews and ratings as input data. Furthermore, the performance of our approach will be better if other structured and unstructured data sources are added.

System Development for Measuring Group Engagement in the Art Center (공연장에서 다중 몰입도 측정을 위한 시스템 개발)

  • Ryu, Joon Mo;Choi, Il Young;Choi, Lee Kwon;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.45-58
    • /
    • 2014
  • The Korean Culture Contents spread out to Worldwide, because the Korean wave is sweeping in the world. The contents stand in the middle of the Korean wave that we are used it. Each country is ongoing to keep their Culture industry improve the national brand and High added value. Performing contents is important factor of arousal in the enterprise industry. To improve high arousal confidence of product and positive attitude by populace is one of important factor by advertiser. Culture contents is the same situation. If culture contents have trusted by everyone, they will give information their around to spread word-of-mouth. So, many researcher study to measure for person's arousal analysis by statistical survey, physiological response, body movement and facial expression. First, Statistical survey has a problem that it is not possible to measure each person's arousal real time and we cannot get good survey result after they watched contents. Second, physiological response should be checked with surround because experimenter sets sensors up their chair or space by each of them. Additionally it is difficult to handle provided amount of information with real time from their sensor. Third, body movement is easy to get their movement from camera but it difficult to set up experimental condition, to measure their body language and to get the meaning. Lastly, many researcher study facial expression. They measures facial expression, eye tracking and face posed. Most of previous studies about arousal and interest are mostly limited to reaction of just one person and they have problems with application multi audiences. They have a particular method, for example they need room light surround, but set limits only one person and special environment condition in the laboratory. Also, we need to measure arousal in the contents, but is difficult to define also it is not easy to collect reaction by audiences immediately. Many audience in the theater watch performance. We suggest the system to measure multi-audience's reaction with real-time during performance. We use difference image analysis method for multi-audience but it weaks a dark field. To overcome dark environment during recoding IR camera can get the photo from dark area. In addition we present Multi-Audience Engagement Index (MAEI) to calculate algorithm which sources from sound, audience' movement and eye tracking value. Algorithm calculates audience arousal from the mobile survey, sound value, audience' reaction and audience eye's tracking. It improves accuracy of Multi-Audience Engagement Index, we compare Multi-Audience Engagement Index with mobile survey. And then it send the result to reporting system and proposal an interested persons. Mobile surveys are easy, fast, and visitors' discomfort can be minimized. Also additional information can be provided mobile advantage. Mobile application to communicate with the database, real-time information on visitors' attitudes focused on the content stored. Database can provide different survey every time based on provided information. The example shown in the survey are as follows: Impressive scene, Satisfied, Touched, Interested, Didn't pay attention and so on. The suggested system is combine as 3 parts. The system consist of three parts, External Device, Server and Internal Device. External Device can record multi-Audience in the dark field with IR camera and sound signal. Also we use survey with mobile application and send the data to ERD Server DB. The Server part's contain contents' data, such as each scene's weights value, group audience weights index, camera control program, algorithm and calculate Multi-Audience Engagement Index. Internal Device presents Multi-Audience Engagement Index with Web UI, print and display field monitor. Our system is test-operated by the Mogencelab in the DMC display exhibition hall which is located in the Sangam Dong, Mapo Gu, Seoul. We have still gotten from visitor daily. If we find this system audience arousal factor with this will be very useful to create contents.

A Methodology of Customer Churn Prediction based on Two-Dimensional Loyalty Segmentation (이차원 고객충성도 세그먼트 기반의 고객이탈예측 방법론)

  • Kim, Hyung Su;Hong, Seung Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.111-126
    • /
    • 2020
  • Most industries have recently become aware of the importance of customer lifetime value as they are exposed to a competitive environment. As a result, preventing customers from churn is becoming a more important business issue than securing new customers. This is because maintaining churn customers is far more economical than securing new customers, and in fact, the acquisition cost of new customers is known to be five to six times higher than the maintenance cost of churn customers. Also, Companies that effectively prevent customer churn and improve customer retention rates are known to have a positive effect on not only increasing the company's profitability but also improving its brand image by improving customer satisfaction. Predicting customer churn, which had been conducted as a sub-research area for CRM, has recently become more important as a big data-based performance marketing theme due to the development of business machine learning technology. Until now, research on customer churn prediction has been carried out actively in such sectors as the mobile telecommunication industry, the financial industry, the distribution industry, and the game industry, which are highly competitive and urgent to manage churn. In addition, These churn prediction studies were focused on improving the performance of the churn prediction model itself, such as simply comparing the performance of various models, exploring features that are effective in forecasting departures, or developing new ensemble techniques, and were limited in terms of practical utilization because most studies considered the entire customer group as a group and developed a predictive model. As such, the main purpose of the existing related research was to improve the performance of the predictive model itself, and there was a relatively lack of research to improve the overall customer churn prediction process. In fact, customers in the business have different behavior characteristics due to heterogeneous transaction patterns, and the resulting churn rate is different, so it is unreasonable to assume the entire customer as a single customer group. Therefore, it is desirable to segment customers according to customer classification criteria, such as loyalty, and to operate an appropriate churn prediction model individually, in order to carry out effective customer churn predictions in heterogeneous industries. Of course, in some studies, there are studies in which customers are subdivided using clustering techniques and applied a churn prediction model for individual customer groups. Although this process of predicting churn can produce better predictions than a single predict model for the entire customer population, there is still room for improvement in that clustering is a mechanical, exploratory grouping technique that calculates distances based on inputs and does not reflect the strategic intent of an entity such as loyalties. This study proposes a segment-based customer departure prediction process (CCP/2DL: Customer Churn Prediction based on Two-Dimensional Loyalty segmentation) based on two-dimensional customer loyalty, assuming that successful customer churn management can be better done through improvements in the overall process than through the performance of the model itself. CCP/2DL is a series of churn prediction processes that segment two-way, quantitative and qualitative loyalty-based customer, conduct secondary grouping of customer segments according to churn patterns, and then independently apply heterogeneous churn prediction models for each churn pattern group. Performance comparisons were performed with the most commonly applied the General churn prediction process and the Clustering-based churn prediction process to assess the relative excellence of the proposed churn prediction process. The General churn prediction process used in this study refers to the process of predicting a single group of customers simply intended to be predicted as a machine learning model, using the most commonly used churn predicting method. And the Clustering-based churn prediction process is a method of first using clustering techniques to segment customers and implement a churn prediction model for each individual group. In cooperation with a global NGO, the proposed CCP/2DL performance showed better performance than other methodologies for predicting churn. This churn prediction process is not only effective in predicting churn, but can also be a strategic basis for obtaining a variety of customer observations and carrying out other related performance marketing activities.