• Title/Summary/Keyword: Intelligent diagnostic system

Search Result 100, Processing Time 0.035 seconds

Diagnosis Method for Power Transformer using Intelligent Algorithm based on ELM and Fuzzy Membership Function (ELM 기반의 지능형 알고리즘과 퍼지 소속함수를 이용한 유입변압기 고장진단 기법)

  • Lim, Jae-Yoon;Lee, Dae-Jong;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.194-199
    • /
    • 2017
  • Power transformers are an important factor for power transmission and cause fatal losses if faults occur. Various diagnostic methods have been applied to predict the failure and to identify the cause of the failure. Typical diagnostic methods include the IEC diagnostic method, the Duval diagnostic method, the Rogers diagnostic method, and the Doernenburg diagnostic method using the ratio of the main gas. However, each diagnostic method has a disadvantage in that it can't diagnose the state of the power transformer unless the gas ratio is within the defined range. In order to solve these problems, we propose a diagnosis method using ELM based intelligent algorithm and fuzzy membership function. The final diagnosis is performed by multiplying the result of diagnosis in the four diagnostic methods (IEC, Duval, Rogers, and Doernenburg) by the fuzzy membership values. To show its effectiveness, the proposed fault diagnostic system has been intensively tested with the dissolved gases acquired from various power transformers.

Comparative Study on the Selection Algorithm of CLINAID using Fuzzy Relational Products

  • Noe, Chan-Sook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.849-855
    • /
    • 2008
  • The Diagnostic Unit of CLINAID can infer working diagnoses for general diseases from the information provided by a user. This user-provided information in the form of signs and symptoms, however, is usually not sufficient to make a final decision on a working diagnosis. In order for the Diagnostic Unit to reach a diagnostic conclusion, it needs to select suitable clinical investigations for the patients. Because different investigations can be selected for the same patient, we need a process that can optimize the selection procedure employed by the Diagnostic Unit. This process, called a selection algorithm, must work with the fuzzy relational method because CLINAID uses fuzzy relational structures extensively for its knowledge bases and inference mechanism. In this paper we present steps of the selection algorithm along with simulation results on this algorithm using fuzzy relational products, both harsh product and mean product. The computation results of applying several different fuzzy implication operators are compared and analyzed.

Reliability Analysis of Slab Transfer Equipment in Hot Rolling Furnace (열간압연 가열로 슬라브 이송장치 신뢰도 해석)

  • Bae, Young-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.6-14
    • /
    • 2006
  • The development of automatic production systems have required intelligent diagnostic and monitoring functions to overcome system failure and reduce production loss by the failure. In order to perform accurate operations of the intelligent system, implication about total system failure and fault analysis due to each mechanical component failures are required. Also solutions for repair and maintenance can be suggested from these analysis results. As an essential component of a mechanical system, a bearing system is investigated to define the failure behavior. The bearing failure is caused by lubricant system failure, metallurgical deficiency, mechanical condition(vibration, overloading, misalignment) and environmental effects. This study described slab transfer equipment fault train due to stress variation and metallurgical deficiency from lubricant failure by using FTA.

An Integrated Diagnostic System Based on the Cooperative Problem Solving of Multi-Agents: Design and Implementation

  • Shin Dongil;Oh Taehoon;Yoon En Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.2 s.23
    • /
    • pp.28-34
    • /
    • 2004
  • Enhanced methodologies for process diagnosis and abnormal situation management have been developed for the last two decades. However, there is no single method that always shows better performance over all kinds of diagnostic problems. In this paper, a framework of message-passing, cooperative, intelligent diagnostic agents is presented for improved on-line fault diagnosis through cooperative problem solving of different expertise. A group of diagnostic agents in charge of different process functional perform local diagnoses in parallel; exchange related information with other diagnostic agents; and cooperatively solve the global diagnostic problem of the whole process plant or business units just like human experts would do. For their better understanding, sharing and exchanging of process knowledge and information, we also suggest a way of remodeling processes and protocols, taking into account semantic abstracts of process information and data. The benefits of the suggested multi-agents-based approach are demonstrated by the implementations for solving the diagnostic problems of various chemical processes.

  • PDF

Intelligent Diagnostic System of Photovoltaic Connection Module for Fire Prevention (화재 예방을 위한 태양광 접속반의 지능형 진단 시스템)

  • Ahn, Jae Hyun;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.161-166
    • /
    • 2021
  • To prevent accidents caused by changes in the surrounding environment or other factors, various protection facilities are installed at the photovoltaic connection module. The main causes of fire are sparks due to foreign substances inside the photovoltaic connection module through high temperature rise and dew condensation in the photovoltaic connection module, and fire due to heat from the power diode. The proposed method can predict the fire by measuring flame, carbon dioxide, carbon monoxide, temperature, humidity, input voltage, and current on the photovoltaic connection module, and when the fire conditions are reached, fire alarm and power off can be sent to managers and users in real time to prevent fire in advance.

COMPUTATIONAL INTELLIGENCE IN NUCLEAR ENGINEERING

  • UHRIG ROBERT E.;HINES J. WESLEY
    • Nuclear Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.127-138
    • /
    • 2005
  • Approaches to several recent issues in the operation of nuclear power plants using computational intelligence are discussed. These issues include 1) noise analysis techniques, 2) on-line monitoring and sensor validation, 3) regularization of ill-posed surveillance and diagnostic measurements, 4) transient identification, 5) artificial intelligence-based core monitoring and diagnostic system, 6) continuous efficiency improvement of nuclear power plants, and 7) autonomous anticipatory control and intelligent-agents. Several changes to the focus of Computational Intelligence in Nuclear Engineering have occurred in the past few years. With earlier activities focusing on the development of condition monitoring and diagnostic techniques for current nuclear power plants, recent activities have focused on the implementation of those methods and the development of methods for next generation plants and space reactors. These advanced techniques are expected to become increasingly important as current generation nuclear power plants have their licenses extended to 60 years and next generation reactors are being designed to operate for extended fuel cycles (up to 25 years), with less operator oversight, and especially for nuclear plants operating in severe environments such as space or ice-bound locations.

Diagnosing the Cause of Operational Faults in Machine Tools with an Open Architecture CNC

  • Kim Dong Hoon;Kim Sun Ho;Song Jun-Yeob
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1597-1610
    • /
    • 2005
  • The conventional computerized numerical controller (CNC) of machine tools has been increasingly replaced by a PC-based open architecture CNC (OAC) that is independent of a CNC vendor. The OAC and machine tools with an OAC have led to a convenient environment in which user-defined applications can be efficiently implemented within a CNC. This paper proposes a method of diagnosing the cause of operational faults. The method is based on the status of a programmable logic controller in machine tools with an OAC. An operational fault is defined as a disability that occurs during the normal operation of machine tools. Operational faults constitute more than 70 percent of all faults and are also unpredictable because most of them occur without any warning. To quickly and correctly diagnose the cause of an operational fault, two diagnostic models are proposed: the switching function and the step switching function. The cause of the fault is logically diagnosed through a fault diagnosis system using diagnostic models. A suitable interface environment between a CNC and developed application modules is constructed to implement the diagnostic functions in the CNC domain. The results of the diagnosis were displayed on a CNC monitor for machine operators and transmitted to a remote site through a Web browser. The proposed diagnostic method and its results were useful to unskilled machine operators and reduced the machine downtime.

Multiple Case-based Reasoning Systems using Clustering Technique (클러스터링 기법에 의한 다중 사례기반 추론 시스템)

  • 이재식
    • Journal of Intelligence and Information Systems
    • /
    • v.6 no.1
    • /
    • pp.97-112
    • /
    • 2000
  • The basic idea of case-based reasoning is to solve a new problem using the previous problem-solving experiences. In this research we develop a case-based reasoning system for equipment malfunction diagnosis. We first divide the case base into clusters using the case-based clustering technique. Then we develop an appropriate case-based diagnostic system for each cluster. In other words for individual cluster a different case-based diagnostic system which uses different weights for attributes is developed. As a result multiple case-based reasoning system are operating to solve a diagnostic problem. In comparison to the performance of the single case-based reasoning system our system reduces the computation time by 50% and increases the accuracy by 5% point.

  • PDF

An autonomous control framework for advanced reactors

  • Wood, Richard T.;Upadhyaya, Belle R.;Floyd, Dan C.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.896-904
    • /
    • 2017
  • Several Generation IV nuclear reactor concepts have goals for optimizing investment recovery through phased introduction of multiple units on a common site with shared facilities and/or reconfigurable energy conversion systems. Additionally, small modular reactors are suitable for remote deployment to support highly localized microgrids in isolated, underdeveloped regions. The long-term economic viability of these advanced reactor plants depends on significant reductions in plant operations and maintenance costs. To accomplish these goals, intelligent control and diagnostic capabilities are needed to provide nearly autonomous operations with anticipatory maintenance. A nearly autonomous control system should enable automatic operation of a nuclear power plant while adapting to equipment faults and other upsets. It needs to have many intelligent capabilities, such as diagnosis, simulation, analysis, planning, reconfigurability, self-validation, and decision. These capabilities have been the subject of research for many years, but an autonomous control system for nuclear power generation remains as-yet an unrealized goal. This article describes a functional framework for intelligent, autonomous control that can facilitate the integration of control, diagnostic, and decision-making capabilities to satisfy the operational and performance goals of power plants based on multimodular advanced reactors.

Development of Fault Diagnostic Algorithm based on Spectrum Analysis of Acceleration Signal for Wind Turbine System (가속도 신호의 주파수 분석에 기반한 풍력발전 고장진단 알고리즘 개발)

  • Ahn, Sung-Ill;Choi, Seong-Jin;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.675-680
    • /
    • 2012
  • Wind energy is currently the fastest growing source of renewable energy used for electrical generation around the world. Wind farms are adding a significant amount of electrical generation capacity. The increase in the number of wind farms has led to the need for more effective operation and maintenance. CMS(Condition Monitoring System) can be used to aid plant operator in achieving these goals. Its aim is to provide operators with information regarding th e health of their machine, which in turn, can help them improve operation efficiency. In this work, wind turbine fault diagnostic algorithm which can diagnose the mass unbalance and aerodynamic asymmetry of the blades is proposed. Proposed diagnostic algorithm utilizes both FFT(Fast Feurier Transform) of the signal from accelerometers installed inside of nacelle and simple diagnostic logic. Furthermore, to verify the applicability of the proposed system, 3W small sized wind turbine system is tested and physical experiments are carried out.