• Title/Summary/Keyword: Intelligent Vehicles

Search Result 771, Processing Time 0.027 seconds

A Design of Color-identifying Multi Vehicle Controller for Material Delivery Using Adaptive Fuzzy Controller (적응 퍼지제어기를 이용한 컬러식별 Multi Vehicle의 물류이송을 위한 다중제어기 설계)

  • Kim, Hun-Mo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.42-49
    • /
    • 2001
  • In This paper, we present a collaborative method for material delivery using a distributed vehicle agents system. Generally used AGV(Autonomous Guided Vehicle) systems in FA(Factory Automation) require extraordinary facilities like guidepaths and landmarks and have numerous limitations for application in different environments. Moreover in the case of controlling multi vehicles, the necessity for developing corporation abilities like loading and unloading materials between vehicles including different types is increasing nowadays for automation of material flow. Thus to compensate and improve the functions of AGV, it is important to endow vehicles with the intelligence to recognize environments and goods and to determine the goal point to approach. In this study we propose an interaction method between hetero-type vehicles and adaptive fuzzy logic controllers for sensor-based path planning methods and material identifying methods which recognizes color. For the purpose of carrying materials to the goal, simple color sensor is used instead of intricate vision system to search for material and recognize its color in order to determine the goal point to transfer it to. The technique for the proposed method will be demonstrated by experiment.

  • PDF

A Study for Smart Overload Vehicle Regulation System (지능형 과적단속을 위한 시스템 구축 연구)

  • Jo, Byung-Wan;Yoon, Kwang-Won;Park, Jung-Hoon;Choi, Ji-Sun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.399-404
    • /
    • 2011
  • Overload vehicles have demoralizing influence upon the social overhead capital, economics of nation, traffic flow and road safe as various components. Accordingly, this study established a ubiquitous sensor network system to develop an intelligent regulation system to monitor overloaded vehicles in motion. and Unlike WIM, after detecting the axle of driving vehicles by measuring deformation of roads, this system calculates the weights of vehicles by using signals from the strain sensors installed under the road and an analysis method. Also the study conducted an simulation test for vehicle load analysis using genetic algorithm. and tested wireless sensor for USN system.

Multi-system vehicle formation control based on nearest neighbor trajectory optimization

  • Mingxia, Huang;Yangyong, Liu;Ning, Gao;Tao, Yang
    • Advances in nano research
    • /
    • v.13 no.6
    • /
    • pp.587-597
    • /
    • 2022
  • In the present study, a novel optimization method in formation control of multi -system vehicles based on the trajectory of the nearest neighbor trajectory is presented. In this regard, the state equations of each vehicle and multisystem is derived and the optimization scheme based on minimizing the differences between actual positions and desired positions of the vehicles are conducted. This formation control is a position-based decentralized model. The trajectory of the nearest neighbor are optimized based on the current position and state of the vehicle. This approach aids the whole multi-agent system to be optimized on their trajectory. Furthermore, to overcome the cumulative errors and maintain stability in the network a semi-centralized scheme is designed for the purpose of checking vehicle position to its predefined trajectory. The model is implemented in Matlab software and the results for different initial state and different trajectory definition are presented. In addition, to avoid collision avoidance and maintain the distances between vehicles agents at a predefined desired distances. In this regard, a neural fuzzy network is defined to be utilized in conjunction with the control system to avoid collision between vehicles. The outcome reveals that the model has acceptable stability and accuracy.

Autonomous Vehicles as Safety and Security Agents in Real-Life Environments

  • Al-Absi, Ahmed Abdulhakim
    • International journal of advanced smart convergence
    • /
    • v.11 no.2
    • /
    • pp.7-12
    • /
    • 2022
  • Safety and security are the topmost priority in every environment. With the aid of Artificial Intelligence (AI), many objects are becoming more intelligent, conscious, and curious of their surroundings. The recent scientific breakthroughs in autonomous vehicular designs and development; powered by AI, network of sensors and the rapid increase of Internet of Things (IoTs) could be utilized in maintaining safety and security in our environments. AI based on deep learning architectures and models, such as Deep Neural Networks (DNNs), is being applied worldwide in the automotive design fields like computer vision, natural language processing, sensor fusion, object recognition and autonomous driving projects. These features are well known for their identification, detective and tracking abilities. With the embedment of sensors, cameras, GPS, RADAR, LIDAR, and on-board computers in many of these autonomous vehicles being developed, these vehicles can properly map their positions and proximity to everything around them. In this paper, we explored in detail several ways in which these enormous features embedded in these autonomous vehicles, such as the network of sensors fusion, computer vision and natural image processing, natural language processing, and activity aware capabilities of these automobiles, could be tapped and utilized in safeguarding our lives and environment.

Measuring a Range of Information Dissemination in a Traffic Information System Based on a Vehicular ad hoc Network (Vehicular ad hoc network 기반 교통 정보 시스템에서 차량간 통신에 의한 정보 전달 범위 측정)

  • Kim, Hyoung-Soo;Shin, Min-Ho;Nam, Beom-Seok;Lovell, David J.
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.6
    • /
    • pp.12-20
    • /
    • 2008
  • Recent wireless communication technologies are envisioned as an innovative alternative to solve transportation problems. On ad hoc networks, as a wireless communication technology, nodes can communicate data without any infrastructure. In particular, vehicular ad hoc networks (VANETs), a specific ad hoc network applied to vehicles, enable vehicles equipped with a communication device to form decentralized traffic information systems in which vehicles share traffic information they experienced. This study investigated traffic information dissemination in a VANET-based traffic information system. For this study, an integrated transportation and communications simulation framework was developed, and experiments were conducted with real highway networks and traffic demands. The results showed that it took 3 minutes in the low traffic density situations (10 vehicle/lane.km) and 43 seconds in the high traffic density condition (40 vehicle/lane.km) to deliver traffic information of 5km away with 10% market penetration rate. In uncongested traffic conditions, information seems to be disseminated via equipped vehicles in the opposite direction. In congested traffic conditions, the sufficient availability of equipped vehicles traveling in the same direction reduces the chance to use vehicles in the opposing direction even though it is still possible.

  • PDF

Detection Algorithm of Road Damage and Obstacle Based on Joint Deep Learning for Driving Safety (주행 안전을 위한 joint deep learning 기반의 도로 노면 파손 및 장애물 탐지 알고리즘)

  • Shim, Seungbo;Jeong, Jae-Jin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.2
    • /
    • pp.95-111
    • /
    • 2021
  • As the population decreases in an aging society, the average age of drivers increases. Accordingly, the elderly at high risk of being in an accident need autonomous-driving vehicles. In order to secure driving safety on the road, several technologies to respond to various obstacles are required in those vehicles. Among them, technology is required to recognize static obstacles, such as poor road conditions, as well as dynamic obstacles, such as vehicles, bicycles, and people, that may be encountered while driving. In this study, we propose a deep neural network algorithm capable of simultaneously detecting these two types of obstacle. For this algorithm, we used 1,418 road images and produced annotation data that marks seven categories of dynamic obstacles and labels images to indicate road damage. As a result of training, dynamic obstacles were detected with an average accuracy of 46.22%, and road surface damage was detected with a mean intersection over union of 74.71%. In addition, the average elapsed time required to process a single image is 89ms, and this algorithm is suitable for personal mobility vehicles that are slower than ordinary vehicles. In the future, it is expected that driving safety with personal mobility vehicles will be improved by utilizing technology that detects road obstacles.

Development of a Korean-version Integrated Message Set to Provide Information on Traffic Safety Facilities for Autonomous Vehicles (자율주행 자동차 대응 교통안전시설의 정보 제공을 위한 한국형 통합 메시지 셋 설계 방안 연구)

  • Eunjeong Ko;Hyeokjun Jang;Eum Han;Kitae Jang
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.284-298
    • /
    • 2022
  • It is necessary to acquire information on traffic safety facilities installed on the roadways specifically for the operation of autonomous vehicles. The purpose of this study is to prepare a Korean version of an integrated message-set design as a way to provide to autonomous vehicles standardized information on traffic safety facilities. In this study, necessary facilities are classified according to four criteria (no legal basis; not providing information to autonomous vehicles; providing duplicate information; not standardized, and too difficult to generalize) based on information that must be provided to operate autonomous vehicles. The priority of information delivery (gross negligence followed by behavior change) was classified according to the importance of the information to be provided during autonomous driving, and the form was defined for the classification code in the information delivered. Finally, the information location and delivery method of traffic facilities for compliance with SAE J2735 were identified. This study is meaningful in that it provides a plan for roadway operations by suggesting a method for providing information to autonomously driven vehicles.

A Study on Road Traffic Volume Survey Using Vehicle Specification DB (자동차 제원 DB를 활용한 도로교통량 조사방안 연구)

  • Ji min Kim;Dong seob Oh
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.2
    • /
    • pp.93-104
    • /
    • 2023
  • Currently, the permanent road traffic volume surveys under Road Act are conducted using a intrusive Automatic Vehicle Classification (AVC) equipments to classify 12 categories of vehicles. However, intrusive AVC equipment inevitably have friction with vehicles, and physical damage to sensors due to cracks in roads, plastic deformation, and road construction decreases the operation rate. As a result, accuracy and reliability in actual operation are deteriorated, and maintenance costs are also increasing. With the recent development of ITS technology, research to replace the intrusive AVC equipment is being conducted. However multiple equipments or self-built DB operations were required to classify 12 categories of vehicles. Therefore, this study attempted to prepare a method for classifying 12 categories of vehicles using vehicle specification information of the Vehicle Management Information System(VMIS), which is collected and managed in accordance with Motor Vehicle Management Act. In the future, it is expected to be used to upgrade and diversify road traffic statistics using vehicle specifications such as the introduction of a road traffic survey system using Automatic Number Plate Recognition(ANPR) and classification of eco-friendly vehicles.

Study on Improvement Plans for Installation and Operation of Traffic Safety Facilities according to Differences in Perception Methods and Range of Autonomous Vehicles and Human Vehicles (자율주행차량과 일반차량의 인지 방식과 범위의 차이에 따른 교통안전시설 설치 및 운영 개선방안 연구)

  • Hyeokjun Jang;Eunjeong Ko;Eum Han;Kitae Jang
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.311-326
    • /
    • 2023
  • This paper proposes a plan to improve the installation and operation of traffic safety facilities using a microscopic simulation by confirming the difference in the perception method and range of autonomous vehicles and human vehicles. In this study, the existing 『Traffic Safety Sign Installation·Management Guidelines』 was reviewed, and safety signs among traffic safety facilities were classified according to changes in vehicle behavior. Subsequently, for the classified facilities, the installation location of the traffic sign was changed through simulation experiments, and the optimal location was inferred to suggest an improvement plan. This study confirmed how traffic safety facilities installed based on the visibility of human drivers affect road efficiency and safety in mixed traffic flow with autonomous vehicles and human-controlled vehicles. The optimal location derived through this study is meaningful because it can be used as the basis for revising the guidelines on the installation and management of traffic safety facilities.