• Title/Summary/Keyword: Intelligent Transport Systems (ITS)

Search Result 2,123, Processing Time 0.031 seconds

Development of a Passive Infrared Detector Algorithm for the Stop-line Detector of a Signalized Intersection (신호교차로의 정지선 검지기를 위한 수동형 적외선 검지기 알고리즘 개발(점유시간을 중심으로))

  • Jeong Sok-Min;Lee Seung-Hwan;Kim Nam-Sun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.2 no.1 s.2
    • /
    • pp.25-40
    • /
    • 2003
  • The purpose of this thesis is development of detection algorithm for stop-line detector. Detail detection area is set in basing detection area($1.8{\times}4.0m$) and traffic information(volume, occupancy, nonoccupancy) is collected by passive infrared detector at designing detection area. The basis detection area($1.8{\times}4.0m$) is named existing PIR and detection area applied on development algorithm is named proposal PIR. The proposal PIR is collected data such volume, occupancy, nonoccupancy, speed and lane change, but this thesis is limited to evaluate for volume, occupancy and nonoccupancy The procedure and each step of being developed algorithm is described in the next (1) The detection area of proposal PIR is made up of 2 of $1.8{\times}0.6m$ size(the detection area is named 1 and 3) and 1 of $1.8{\times}1.78m$ size(the detection area is named 2) (2) The image detection area is set on monitor to analyze outdoor photographing data then video frame analysis has been done by analyzer. (3) The occupancy, nonoccupancy and speed data of vehicle have been collected with the detection area 1 and 3 and lane change has been collected with combination of detection area 1, 2 and 3 The MAD and MAPE have been utilized to being compared with volume, occupancy and nonoccupancy for the field application and evaluation of a algorithm As the result, the proposal PIR data have been identified superior to the existing PIR data and the effect has been improved its information(volume, occupancy and nonoccupancy)

  • PDF

An Analysis into the Characteristics of the High-pass Transportation Data and Information Processing Measures on Urban Roads (도시부도로에서의 하이패스 교통자료 특성분석 및 정보가공방안)

  • Jung, Min-Chul;Kim, Young-Chan;Kim, Dong-Hyo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.6
    • /
    • pp.74-83
    • /
    • 2011
  • The high-pass transportation information system directly collects section information by using probe cars and therefore can offer more reliable information to drivers. However, because the running condition and features of probe cars and statistical processing methods affect the reliability of the information and particularly because the section travel time is greatly influenced by whether there has been delay by signals on urban roads or not, there can be much deviation among the collected individual probe data. Accordingly, researches in multilateral directions are necessary in order to enhance the credibility of the section information. Yet, the precedent studies related to high-pass information provision have been conducted on the highway sections with the feature of continuous flow, which has a limit to be applied to the urban roads with the transportational feature of an interrupted flow. Therefore, this research aims at analyzing the features of high-pass transportation data on urban roads and finding a proper processing method. When the characteristics of the high-pass data on urban roads collected from RSE were analyzed by using a time-space diagram, the collected data was proved to have a certain pattern according to the arriving cars' waiting for signals with the period of the signaling cycle of the finish node. Moreover, the number of waiting for signals and the time of waiting caused the deviation in the collected data, and it was bigger in traffic jam. The analysis result showed that it was because the increased number of waiting for signals in traffic jam caused the deviation to be offset partially. The analysis result shows that it is appropriate to use the mean of this collected data of high-pass on urban roads as its representative value to reflect the transportational features by waiting for signals, and the standard of judgment of delay and congestion needs to be changed depending on the features of signals and roads. The results of this research are expected to be the foundation stone to improve the reliability of high-pass information on urban roads.

Mitigation of Insufficient Capacity Problems of Central Bus Stops by Controlling Effective Green Time (유효녹색시간 조정을 활용한 중앙버스정류장 용량 부족 완화 방안 연구)

  • Koo, Kyo Min;Lee, Jae Duk;Ahn, Se Young;Chang, Iljoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.35-50
    • /
    • 2022
  • After the introduction of the central bus lane system, bus traffic was prioritized. This resulted in improved trust from bus users. However, the low capacity at the central bus stop reduces traffic speed and punctuality. In addition, physical constraints are inevitable because the construction of central bus lanes and bus stops considers the city's road geometry. Therefore, this study attempted to optimize the effective green time of the traffic signal system at the entrance and exit of the central bus stop to remedy its insufficient operational capacity. The Transit Capacity and Quality of Service Manual and Korea Highway Capacity Manual were used as the analysis methodologies. The number of stop areas for central bus stops to be built was determined by excluding variable physical factors, and field survey data collected from nine randomly selected central bus stops currently installed in Seoul were used. A scenario analysis was conducted on the central bus stops with insufficient capacity by adjusting the effective green time, and the capacity of the central bus stop was set as the dependent variable. According to the results, 26.7 percent of the central bus stops with insufficient capacity can solve the problem of insufficient capacity. Therefore, the results of this study can be verified by improving the operation level, and it can be effective even if the number of central bus stops calculated by engineering is not guaranteed during the planning stage of the central bus stop. As the number of central bus stops is expected to increase further as the number of central bus stops increases, it is necessary to improve the number of central bus stops. Therefore, it is hoped that the results presented in this study will be used as basic data for the improvement plan at the operational level before introducing the physical improvement plan.

Research for Improving the Speed of Scrambler in the WAVE System (WAVE 시스템에서 스크램블러의 속도 향상을 위한 연구)

  • Lee, Dae-Sik;You, Young-Mo;Lee, Sang-Youn;Oh, Se-Kab
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.9
    • /
    • pp.799-808
    • /
    • 2012
  • Bit operation of scrambler in the WAVE System become less efficient because parallel processing is impossible in terms of hardware and software. In this paper, we propose algorism to find the starting position of the matrix table. Also, when bit operation algorithm of scrambler and algorithms for matrix table, algorithm used to find starting position of the matrix table were compared with the performance as 8 bit, 16bit, 32 bit processing units. As a result, the number of processing times per second could be done 2917.8 times more in an 8-bit, 5432.1 times in a 16-bit, 10277.8 times in a 32 bit. Therefore, algorithm to find the starting position of the matrix table improves the speed of the scrambler in the WAVE and the receiving speed of a variety of information gathering and precision over the Vehicle to Infra or Vehicle to Vehicle in the Intelligent Transport Systems.

Low Pass Filtering for the Extraction of Island Detection in Coastal Zone from SPOT Imagery (SPOT 위성영상을 이용한 LPF 기법으로 해안지역의 섬 경계 추출)

  • Choi Hyun;Yoon Hong-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.8
    • /
    • pp.1787-1792
    • /
    • 2005
  • The join of remote sensing and GIS(Geographic Information System) could be useful in various fields of marine information and land information as well as ITS(Intelligent Transport Systems). This paper is LPF(Low Pass Filtering) for the extraction of island detection in coastal zone Iron SPOT imagery which is 10m resolution photograph. The study area is based on the southern sea in korea. Sobel operator performed the extraction of island detection in coastal zone after the LPF processing by remote sensing. And, GIS was used to generate from raster to vector data. As the result, The best way prove out the 5${\times}$5 convolution mask about the LPF processing of island detection in coastal zone. It is judged the research which it sees with the fact that the presentation of very scientific and reasonable data will be possible from the oceanic dispute will occur from the EEZ(Exclusive Economic Zone).

Study on Next Generation V2X System and Its Transmission Range (차세대 V2X 시스템과 그 전송 거리 분석)

  • Ahn, Jinsoo;Kim, Baik;Kim, Ronny Yongho
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.1
    • /
    • pp.36-43
    • /
    • 2019
  • In this paper, a novel channel access scheme for the next-generation vehicle to anything (V2X) system based on IEEE 802.11p standard which is applied to recent connected car technologies is suggested and analyzed. The proposed scheme proposes a channel access method utilizing OFDMA multi-user transmission for IEEE 802.11p based system. In this paper, the authors examine geographical distance and network area performance of IEEE 802.11p system and the proposed scheme. Results of this research show that the proposed scheme is quite suitable for improving conventional V2X standards and systems. This paper also provides mathematical analysis and simulation results of the conventional IEEE 802.11p system and the proposed scheme.

Proposed Message Transit Buffer Management Model for Nodes in Vehicular Delay-Tolerant Network

  • Gballou Yao, Theophile;Kimou Kouadio, Prosper;Tiecoura, Yves;Toure Kidjegbo, Augustin
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.153-163
    • /
    • 2023
  • This study is situated in the context of intelligent transport systems, where in-vehicle devices assist drivers to avoid accidents and therefore improve road safety. The vehicles present in a given area form an ad' hoc network of vehicles called vehicular ad' hoc network. In this type of network, the nodes are mobile vehicles and the messages exchanged are messages to warn about obstacles that may hinder the correct driving. Node mobilities make it impossible for inter-node communication to be end-to-end. Recognizing this characteristic has led to delay-tolerant vehicular networks. Embedded devices have small buffers (memory) to hold messages that a node needs to transmit when no other node is within its visibility range for transmission. The performance of a vehicular delay-tolerant network is closely tied to the successful management of the nodes' transit buffer. In this paper, we propose a message transit buffer management model for nodes in vehicular delay tolerant networks. This model consists in setting up, on the one hand, a policy of dropping messages from the buffer when the buffer is full and must receive a new message. This drop policy is based on the concept of intermediate node to destination, queues and priority class of service. It is also based on the properties of the message (size, weight, number of hops, number of replications, remaining time-to-live, etc.). On the other hand, the model defines the policy for selecting the message to be transmitted. The proposed model was evaluated with the ONE opportunistic network simulator based on a 4000m x 4000m area of downtown Bouaké in Côte d'Ivoire. The map data were imported using the Open Street Map tool. The results obtained show that our model improves the delivery ratio of security alert messages, reduces their delivery delay and network overload compared to the existing model. This improvement in communication within a network of vehicles can contribute to the improvement of road safety.

Development of Real-Time Optimal Bus Scheduling Models (실시간 버스 운행계획수립 모형 개발)

  • Kim, Wongil;Son, Bongsoo;Chung, Jin-Hyuk;Lee, Jeomho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5D
    • /
    • pp.587-595
    • /
    • 2008
  • Many studies on bus scheduling optimization have been done from the 1960s to recent years for establishing rational bus schedule plan that can improve convenience of bus passengers and minimize unnecessary runs. After 2000, as part of the Intelligent Transport Systems (ITS), the importance of the schedule management and providing schedule information through bus schedule optimization has become a big issue, and much research is being done to develop optimization models that will increase bus passenger convenience and, on the side of bus management, minimize unnecessary bus operation. The purpose of this study is to calculate the optimal bus frequency and create a timetable for each bus stop by applying DTR or DTRC model that use data for each bus stop and route segment. Model verification process was implemented using data collected from bus management system (BMS) and integrated transit-fare card system for bus route of Seoul's No. 472 line. In order to evaluate the reliability and uncertainty of optimal solution, sensitivity analysis was implemented for the various parameters and assumptions used in the bus scheduling model.

A Development of Traffic Queue Length Measuring Algorithm Using ILD(Inductive Loop Detector) Based on COSMOS (실시간 신호제어시스템의 대기길이 추정 알고리즘 개발)

  • seong ki-ju;Lee choul-ki;Jeong Jun-ha;Lee young-in;Park dae-hyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.3 no.1 s.4
    • /
    • pp.85-96
    • /
    • 2004
  • The study begin with a basic concept, if the occupancy length of vehicle detector is directly proportional to the delay of vehicle. That is, it analogize vehicle's delay of a occupancy time. The results of a study was far superior in the estimation of a queue length. It is a very good points the operator is not necessary to optimize s1, s2, Thdoc. Thdoc(critical congestion degree) replaced 0.7 with 0.2 - 0.3. But, if vehicles have been experience in delay was not occupy vehicle detector, the study is in existence some problems. In conclusion, it is necessary that stretch queue detector or install paired queue detector. Also I want to be made steady progress a following study relation to this study, because it is required traffic signal control on congestion.

  • PDF

Mobility and Safety Evaluation Methodology for the Locations of Hi-PASS Lanes Using a Microscopic Traffic Simulation Tool (미시교통시뮬레이션모형을 이용한 하이패스 차로 위치별 이동성 및 안전성 평가방법 연구)

  • Yun, Ilsoo;Han, Eum;Lee, Cheol-Ki;Rho, Jeong Hyun;Lee, Soojin;Kim, Sang Byum
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.1
    • /
    • pp.98-108
    • /
    • 2013
  • The number of Hi-Pass lanes became 793 lanes at 316 expressway tollgates in 2011 due to the increase in the Hi-Pass use. In spite of the increase in the number of Hi-Pass lanes, there have been increased potential risks in tollgates where vehicles using a Hi-Pass lane must weave with other vehicles using a TCS lane. Therefore, there is a need for study on the safety in tollgates. To this end, this study aims at developing a methodology to evaluate the performance measures of diverse location countermeasures of Hi-Pass lanes in an efficient and systematic way. This study measured the mobility, safety and the convenience of installation and operation of Hi-Pass lanes using a microscopic traffic simulation tool, the surrogate safety assessment model and survey. In addition, this study aggregated the above three performance indexes using weight factors estimated using the AHP technique. For the test site, Dongsuwon interchange was selected. After building the microscopic traffic simulation model for the test site, the location countermeasures of Hi-Pass lanes applicable to the test site were compared with each other in terms of the mobility, safety and installing and operating convenience. As a result, there has been no apparent difference in mobility index based on delays. However, the countermeasures where Hi-Pass lanes are located in inside lanes generally showed better safety performance based on the number of conflicts. In addition, countermeasures with neighboring Hi-Pass lanes were favorable in terms of the safety and the convenience of installation and operation. The methodology proposed in this study was found to be useful to support decision makings by providing critical and quantitative information regarding the mobility, safety and the convenience of installation and operation.