• Title/Summary/Keyword: Intelligent Transport Systems (ITS)

Search Result 2,123, Processing Time 0.021 seconds

A Study on the Digital Construction Information Structure for the Implementing Digital Twin of Road Construction Sites (도로 건설현장의 디지털트윈 구현을 위한 디지털 건설정보구조에 관한 연구)

  • Taewon Chung;Hyon Wook Ji;Jin Hoon Bok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.1
    • /
    • pp.153-166
    • /
    • 2024
  • The digitalization of tasks for smart construction requires the smooth exchange of digital data among stakeholders to be effective, but there is a lack of digital data standardization and utilization methods. This paper proposes a digital construction information structure to transform information from road construction sites into digital formats. The study targets include significant tasks, such as work planning, scheduling, safety management, and quality control. The key to the construction information structure is separating construction information into objects and activities, defining unit works by combining these two types of information to ensure flexibility in representing and modifying construction information. The objects and activities have their respective hierarchical structures, which are defined flexibly to match the actual content. This structure achieves both efficiency and detail. The pilot structure was applied to highway construction projects and implemented digitally using general formats. This study enables the digitalization of road construction processes that closely resemble reality, accelerating the digital transformation of the civil engineering industry by developing a digital twin of the entire road construction lifecycle.

A Study on the Density Analysis of Multi-objects Using Drone Imaging (드론 영상을 활용한 다중객체의 밀집도 분석 연구)

  • WonSeok Jang;HyunSu Kim;JinMan Park;MiSeon Han;SeongChae Baek;JeJin Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.69-78
    • /
    • 2024
  • Recently, the use of CCTV to prevent crowd accidents has been promoted, but research is needed to compensate for the spatial limitations of CCTV. In this study, pedestrian density was measured using drone footage, and based on a review of existing literature, a threshold of 6.7 people/m2 was selected as the cutoff risk level for crowd accidents. In addition, we conducted a preliminary study to determine drone parameters and found that the pedestrian recognition rate was high at a drone altitude of 20 meters and an angle of 60°. Based on a previous study, we selected a target area with a high concentration of pedestrians and measured pedestrian density, which was found to be 0.27~0.30 per m2. The study shows it is possible to measure risk levels by determining pedestrian densities in target areas using drone images. We believe drone surveillance will be utilized for crowd safety management in the near future.

A Study on the Impacts of Changes in Road Traffic Conditions and Speed Limits on Traffic Flow and Safety (도로교통 여건과 제한속도 변화에 따른 교통소통과 안전에 관한 영향 분석 연구)

  • Nam sik Moon;Eon kyo Shin;Ju hyun Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.32-49
    • /
    • 2024
  • In this paper, we analyzed the impacts of road traffic conditions and speed limit changes on traffic flow and safety. Travel speed and moving speed were set as traffic flow indicators and'moving speed-travel speed',speed deviation, large speed deviation ratio, and number of conflicts were set as safety indicators, and the impacts of changes in road traffic conditions and speed limits on these were analyzed. According to the analysis results, the speed limit had a significant impacts on the traffic indicators, but did not significantly affect the safety indicators. As a result of the statistical validity test, it was proven that the traffic flow index increases as the speed limit increases. However, although safety indicators often increase, their validity has not been proven statistically. Therefore, if the speed limit is set and operated by properly considering the traffic flow status according to various road conditions and changes in traffic volume, it can be said to match the speed at which drivers drive and improve traffic flow and safety. Therefore, it is expected that calculating the speed limit considering the traffic flow indicators and safety indicators presented in this paper and operating the speed limit according to changes in traffic volume will contribute to stabilizing the traffic flow on the road.

Development of Evaluation Indicators for Optimizing Mixed Traffic Flow Using Complexed Multi-Criteria Decision Approaches (다기준 복합 가중치 결정 기반 혼재 교통류 최적화 평가지표 개발)

  • Donghyeok Park;Nuri Park;Donghee Oh;Juneyoung Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.157-172
    • /
    • 2024
  • Autonomous driving technology, when commercialized, has the potential to improve the safety, mobility, and environmental performance of transportation networks. However, safe autonomous driving may be hindered by poor sensor performance and limitations in long-distance detection. Therefore, cooperative autonomous driving that can supplement information collected from surrounding vehicles and infrastructure is essential. In addition, since HDVs, AVs, and CAVs have different ranges of perceivable information and different response protocols, countermeasures are needed for mixed traffic that occur during the transition period of autonomous driving technology. There is a lack of research on traffic flow optimization that considers the penetration rate of autonomous vehicles and the different characteristics of each road segment. The objective of this study is to develop weights based on safety, operational, and environmental factors for each infrastructure control use case and autonomous vehicle MPR. To develop an integrated evaluation index, infra-guidance AHP and hybrid AHP weights were combined. Based on the results of this study, it can be used to give right of way to each vehicle to optimize mixed traffic.

Determination of Service Areas and Operating Numbers for Free-floating Personal Mobility Sharing Services (First-mile과 Last-mile을 고려한 자유 주차방식(Free-floating) 개인형 이동장치 공유 서비스 권역 및 운영대수 결정)

  • Sang-Wook Han;Dong-Kyu Kim;Sedong Moon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.106-118
    • /
    • 2024
  • Interest in personal mobility has increased with the growing significance of first-mile and last-mile connectivity in smart mobility services. This study aims to propose a methodology for setting the service area of free-floating personal mobility sharing services and determining the optimal fleet size for the selected shared service area to address first-mile and last-mile challenges. We utilize population data, smart card data, and building data. Additionally, we estimate latent demand by incorporating age-specific and distance-specific utilization rates based on personal mobility device data. Along with the latent demand, we determine the service area based on locations of transit stops and buildings. We apply the proposed methodology to Yeongjong Island, Incheon. As a result, dense residential areas and popular beachside locations are designated as personal mobility sharing service areas. The fleet size for personal mobility in the dense residential service area is determined to be 1,022 units, while the fleet size for the beachside service area is set at 269 units.

Analysis of Autonomous Vehicles Risk Cases for Developing Level 4+ Autonomous Driving Test Scenarios: Focusing on Perceptual Blind (Lv 4+ 자율주행 테스트 시나리오 개발을 위한 자율주행차량 위험 사례 분석: 인지 음영을 중심으로)

  • Seung min Oh;Jae hee Choi;Ki tae Jang;Jin won Yoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.173-188
    • /
    • 2024
  • With the advancement of autonomous vehicle (AV) technology, autonomous driving on real roads has become feasible. However, there are challenges in achieving complete autonomy due to perceptual blind areas, which occur when the AV's sensory range or capabilities are limited or impaired by surrounding objects or environmental factors. This study aims to analyze AV accident patterns and safety issues of perceptual blind area that may occur in urban areas, with the goal of developing test scenarios for Level 4+ autonomous driving. It utilized AV accident data from the California Department of Motor Vehicles (DMV) to compare accident patterns and characteristics between AVs and conventional vehicles based on activation status of autonomous mode. It also categorized AV disengagement data to identify types and real-world cases of disengagements caused by perceptual blind areas. The analysis revealed that AVs exhibit different accident types due to their safe driving maneuvers, and three types of perceptual blind area scenarios were identified. The findings of this study serve as crucial foundational data for developing Level 4+ autonomous driving test scenarios, enabling the design of efficient strategies to mitigate perceptual blind areas in various scenarios. This, in turn, is expected to contribute to the effective evaluation and enhancement of AV driving safety on real roads.

Analysis-based Pedestrian Traffic Incident Analysis Based on Logistic Regression (로지스틱 회귀분석 기반 노인 보행자 교통사고 요인 분석)

  • Siwon Kim;Jeongwon Gil;Jaekyung Kwon;Jae seong Hwang;Choul ki Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.15-31
    • /
    • 2024
  • The characteristics of elderly traffic accidents were identified by reflecting the situation of the elderly population in Korea, which is entering an ultra-aging society, and the relationship between independent and dependent variables was analyzed by classifying traffic accidents of serious or higher and traffic accidents of minor or lower in elderly pedestrian traffic accidents using binomial variables. Data collection, processing, and variable selection were performed by acquiring data from the elderly pedestrian traffic accident analysis system (TAAS) for the past 10 years (from 13 to 22 years), and basic statistics and analysis by accident factors were performed. A total of 15 influencing variables were derived by applying the logistic regression model, and the influencing variables that have the greatest influence on the probability of a traffic accident involving severe or higher elderly pedestrians were derived. After that, statistical tests were performed to analyze the suitability of the logistic model, and a method for predicting the probability of a traffic accident according to the construction of a prediction model was presented.

Development of A Turn Label Based Optimal Path Search Algorithm (Turn Label 기반 최적경로탐색 알고리즘 개발)

  • Meeyoung Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.1-14
    • /
    • 2024
  • The most optimal route-search algorithm thus far has introduced a method of applying node labels and link labels. Node labels consider two nodes simultaneously in the optimal route-search process, while link labels consider two links simultaneously. This study proposes a turn-label-based optimal route-search technique that considers two turns simultaneously in the process. Turn-label-based optimal route search guarantees the optimal solution of dynamic programming based on Bellman's principle as it considers a two-turn search process. Turn-label-based optimal route search can accommodate the advantages of applying link labels because the concept of approaching the limit of link labels is applied equally. Therefore, it is possible to reflect rational cyclic traffic where nodes allow multiple visits without expanding the network, while links do not allow visits. In particular, it reflects the additional cost structure that appears in two consecutive turns, making it possible to express the structure of the travel-cost function more flexibly. A case study was conducted on the metropolitan urban railway network consisting of transportation card terminal readers, aiming to examine the scalability of the research by introducing parameters that reflect psychological resistance in travel with continuous pedestrian transfers into turn label optimal path search. Simulation results showed that it is possible to avoid conservative transfers even if the travel time and distance increase as the psychological resistance value for continuous turns increases, confirming the need to reflect the cost structure of turn labels. Nevertheless, further research is needed to secure diversity in the travel-cost functions of road and public-transportation networks.

A Study on the Impact of AI Edge Computing Technology on Reducing Traffic Accidents at Non-signalized Intersections on Residential Road (이면도로 비신호교차로에서 AI 기반 엣지컴퓨팅 기술이 교통사고 감소에 미치는 영향에 관한 연구)

  • Young-Gyu Jang;Gyeong-Seok Kim;Hye-Weon Kim;Won-Ho Cho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.79-88
    • /
    • 2024
  • We used actual field data to analyze from a traffic engineering perspective how AI and edge computing technologies affect the reduction of traffic accidents. By providing object information from 20m behind with AI object recognition, the driver secures a response time of about 3.6 seconds, and with edge technology, information is displayed in 0.5 to 0.8 seconds, giving the driver time to respond to intersection situations. In addition, it was analyzed that stopping before entering the intersection is possible when speed is controlled at 11-12km at the 10m point of the intersection approach and 20km/h at the 20m point. As a result, it was shown that traffic accidents can be reduced when the high object recognition rate of AI technology, provision of real-time information by edge technology, and the appropriate speed management at intersection approaches are executed simultaneously.

Precision Evaluation of Expressway Incident Detection Based on Dash Cam (차량 내 영상 센서 기반 고속도로 돌발상황 검지 정밀도 평가)

  • Sanggi Nam;Younshik Chung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.114-123
    • /
    • 2023
  • With the development of computer vision technology, video sensors such as CCTV are detecting incident. However, most of the current incident have been detected based on existing fixed imaging equipment. Accordingly, there has been a limit to the detection of incident in shaded areas where the image range of fixed equipment is not reached. With the recent development of edge-computing technology, real-time analysis of mobile image information has become possible. The purpose of this study is to evaluate the possibility of detecting expressway emergencies by introducing computer vision technology to dash cam. To this end, annotation data was constructed based on 4,388 dash cam still frame data collected by the Korea Expressway Corporation and analyzed using the YOLO algorithm. As a result of the analysis, the prediction accuracy of all objects was over 70%, and the precision of traffic accidents was about 85%. In addition, in the case of mAP(mean Average Precision), it was 0.769, and when looking at AP(Average Precision) for each object, traffic accidents were the highest at 0.904, and debris were the lowest at 0.629.