• 제목/요약/키워드: Intelligent Tire

검색결과 28건 처리시간 0.026초

UIO를 이용한 선회 시 등판각 추정 (Climbing Angle Estimation in Yawing Motion by UIO)

  • 변형규;김현규;김인근;허건수
    • 한국자동차공학회논문집
    • /
    • 제23권5호
    • /
    • pp.478-485
    • /
    • 2015
  • Availability of the climbing angle information is crucial for the intelligent vehicle system. However, the climbing angle information can't be measured with the sensor mounted on the vehicle. In this paper, climbing angle estimation system is proposed. First, longitudinal acceleration obtained from gyro-sensor is compared with the actual longitudinal acceleration of the vehicle. If the vehicle is in yawing motion, actual longitudinal acceleration can't be approximated from time derivative of wheel speed, because lateral velocity and yaw rate affect actual longitudinal acceleration. Wheel speed and yaw rate can be obtained from the sensors mounted on the vehicle, but lateral velocity can't be measured from the sensor. Therefore, lateral velocity is estimated using unknown input observer with nonlinear tire model. Simulation results show that the compensated results using lateral velocity and yaw rate show better performance than uncompensated results.

2족 보행로봇의 안정된 걸음걸이를 위한 지능제어 알고리즘의 실시간 실현에 관한 연구 (A study on The Real-Time Implementation of Intelligent Control Algorithm for Biped Robot Stable Locomotion)

  • 노연 후 콩;이우송
    • 한국산업융합학회 논문집
    • /
    • 제18권4호
    • /
    • pp.224-230
    • /
    • 2015
  • In this paper, it is presented a learning controller for repetitive walking control of biped walking robot. We propose the iterative learning control algorithm which can learn periodic nonlinear load change ocuured due to the walking period through the intelligent control, not calculating the complex dynamics of walking robot. The learning control scheme consists of a feedforward learning rule and linear feedback control input for stabilization of learning system. The feasibility of intelligent control to biped robotic motion is shown via dynamic simulation with 25-DOF biped walking robot.

Simulation of Vehicle Steering Control through Differential Braking

  • Jang, Bong-Choon;Yun, Yeo-Heung;Lee, Seong-Cheol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권3호
    • /
    • pp.26-34
    • /
    • 2004
  • This paper examines the usefulness of a Brake Steer System(BSS), which uses differential brake forces for steering intervention in the context of Intelligent Transportation Systems(ITS). In order to help the car to turn, a yaw moment control was achieved by altering the left/right and front/rear brake distribution. This resulting yaw moment on the vehicle affects lateral position thereby providing a limited steering function. The steering function achieved through BSS was used to control lateral position in an unintended road departure system. A 8-DOF nonlinear vehicle model including STI tire model was validated using the equations of motion of the vehicle. Then a controller was developed. This controller, which is a PID controller tuned by Ziegler-Nichols, is designed to explore BSS feasibility by modifying the brake distribution through the control of the yaw rate of the vehicle.

후륜 독립 구동 인 휠 모터의 능동적 조향각 생성을 통한 2WS/2WD In-Wheel 플랫폼의 최소회전 반경 감소 (Reducing the Minimum Turning Radius of the 2WS/2WD In-Wheel Platform through the Active Steering Angle Generation of the Rear-wheel Independently Driven In-Wheel Motor)

  • 김태현;황대규;김봉상;이성희;문희창
    • 로봇학회논문지
    • /
    • 제18권3호
    • /
    • pp.299-307
    • /
    • 2023
  • In the midst of accelerating wars around the world, unmanned robot technology that can guarantee the safety of human life is emerging. ERP-42 is a modular platform that can be used according to the application. In the field of defense, it can be used for transporting supplies, reconnaissance and surveillance, and medical evacuation in conflict areas. Due to the nature of the military environment, atypical environments are predominant, and in such environments, the platform's path followability is an important part of mission performance. This paper focuses on reducing the minimum turning radius in terms of improving path followability. The minimum turning radius of the existing 2WS/2WD in-wheel platform was reduced by increasing the torque of the independent driving in-wheel motor on the rear wheel to generate oversteer. To determine the degree of oversteer, two GPS were attached to the center of the front and rear wheelbases and measured. A closed-loop speed control method was used to maintain a constant rotational speed of each wheel despite changes in load or torque.

Implementation of Smart Traffic Safety Systems using Fuzzy Theory

  • Han, Chang Pyoung;Hong, You Sik
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권4호
    • /
    • pp.71-82
    • /
    • 2020
  • Traffic accidents due to excessive speed frequently occur in places where traffic signal controllers are installed, places where sharp curves exist, or places where the traffic signal cycle does not match the current time. These traffic accidents cause economic loss due to the destruction of road facilities and structures, and cause a big problem of increasing the number of traffic accident deaths. When a traffic accident occurs, leaving a tire mark before or after a car crash, pre-collision speed of the car is calculated using the law of conservation of momentum or the skid mark formula. In the skip skid mark generated in ABS brake vehicles and the combshaped yaw mark generated by tire trace caused by lateral sliding, there is a difference of 30-40% in the reliability of the vehicle speed calculated by the smite mark. In this paper, we propose an algorithm that can improve the calculation reliability in vehicle speed by using skid marks in order to compensate for this problem. In addition, we present an intelligent speed calculation algorithm for traffic safety and a computer simulation in order to prevent traffic accidents by estimating the speed of a vehicle, using Skid marks, Yaw marks, and ABS brake characteristics and fuzzy rules.

슬립을 고려한 트랜스퍼 크레인의 주행제어에 관한 연구 (A Study on the Tracking Control of a Transfer Crane with Tire Slip)

  • 정지현;이동석;김영복
    • 제어로봇시스템학회논문지
    • /
    • 제16권12호
    • /
    • pp.1212-1219
    • /
    • 2010
  • The most important thing in the container terminal is to handle the cargo effectively in the limited time. To achieve this object, many strategies have been introduced and applied to. If we consider the technical trends and environment of the automated container terminal, it is necessary that the systems for cargo handling are equipped with more intelligent control technologies. To cope with this tendency, from the middle of the 1990's, the automated RMGC (Rail-Mounted Gantry Crane) and RTGC (Rubber-Tired Gantry Crane) have been developed and widely used to handle containers in the yards. Recently, in these cranes, the many equipments like CCD cameras and sensors are mounted to cope with the automated terminal environment. If we want to obtain more efficient handling performance, the modelling, tracking control, anti-sway system design, skew motion suppressing and complicated motion control problems must be considered in the control system design and application process. Considering these problems, in this paper, the system modelling with the tire slip and a tracking control approach are proposed. Especially, we design the tracking control system based on the 2DOF servosystem design approach to cope with undesirable disturbance input. The experiment results show the desirable performance and usefulness of the designed control system.

지능형 차량 HILS를 위한 실시간 차량 동역학 모델 개발 (Development of Real Time Vehicle Dynamics Models for Intelligent Vehicle HILS)

  • 이창호;김성수;정완희;이선호
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.199-206
    • /
    • 2006
  • Real time vehicle dynamics models have been developed with the subsystem synthesis method for intelligent vehicle HILS system. Three different models for solving subsystem equations are compared in order to find out the best suitable model for HILS applications. The first model is based on the generalized coordinate partitioning technique, and the second one is on the approximate function approach, and the last one is on the constraint stabilization method. To investigate the theoretical efficiency of three proposed methods, arithmetic operators used in the formulations of three models are counted. Bump run simulations with half-sine bump have also carried out with three different models to measure the actual CPU time to validate theoretical investigation.

반능동 현가시스템용 자기동조 게인조절형 스카이훅 제어기의 구현 및 실험 (Self-Tuning Gain-Scheduled Skyhook Control for Semi-Active Suspension Systems: Implementation and Experiment)

  • 홍경태;허창도;홍금식
    • 제어로봇시스템학회논문지
    • /
    • 제8권3호
    • /
    • pp.199-207
    • /
    • 2002
  • In this paper, a self-tuning gain-scheduled skyhook control for semi-active suspension systems is investigated. The dynamic characteristics of a continuously variable damper including electro-hydraulic pressure control valves is analyzed. A 2-d.o.f. time-varying quarter-car model that permits variations in sprung mass and suspension spring coefficient is considered. The self-tuning skyhook control algorithm proposed in this paper requires only the measurement of body acceleration. The absolute velocity of the sprung mass and the relative velocity of the suspension deflection are estimated by using integral filters. The skyhook gains are gain-scheduled in such a way that the body acceleration and the dynamic tire force are optimized. An ECU prototype is discussed. Experimental results using a 1/4-ear simulator are discussed. Also, a suspension ECU prototype targeting real implementation is provided.

RESULTS OF FUNCTIONAL SIMULATION FOR ABS WITH PRE-EXTREME CONTROL

  • IVANOV V.;BELOUS M.;LIAKHAU S.;MIRANOVICH D.
    • International Journal of Automotive Technology
    • /
    • 제6권1호
    • /
    • pp.37-44
    • /
    • 2005
  • The creation of automotive systems of active safety with intelligent functions needs the use of new control principles for the wheel and automobile. One of such directions is the pre-extreme control strategy. Its aim is the ensuring of wheel's work in pre-extreme, stable area of tire grip wheel slip dependence. The simplest realization of pre-extreme control in automotive anti-lock brake systems consists in the threshold and gradient algorithms. A comparative analysis of these algorithms, which has been made on 'hardware in-the-loop' simulation results of the braking for bus with various anti-lock brake systems (ABS), indicated their high efficiency.

차동 제동을 이용한 조향 제어 시뮬레이션 (Simulation of Vehicle Steering Control through Differential Braking)

  • 제롬살랑선네;윤여흥;장봉춘;이성철
    • 한국정밀공학회지
    • /
    • 제19권11호
    • /
    • pp.65-74
    • /
    • 2002
  • This paper examines the usefulness of a Brake Steer System (BSS), which uses differential brake forces for steering intervention in the context of Intelligent Transportation Systems (ITS). In order to help the car to turn, a yaw moment can be achieved by altering the left/right and front/rear brake distribution. This resulting yaw moment on the vehicle affects lateral position thereby providing a limited steering function. The steering function achieved through BSS can then be used to control lateral position in an unintended road departure system. A 8-DOF nonlinear vehicle model including STI tire model will be validated using the equations of motion of the vehicle. Then a controller will be developed. This controller, which will be a PID controller tuned by Ziegler-Nichols, will be designed to explore BSS feasibility by modifying the brake distribution through the control of the yaw rate of the vehicle.