• 제목/요약/키워드: Intelligent Service Value

검색결과 133건 처리시간 0.023초

분리학습 모델을 이용한 수출액 예측 및 수출 유망국가 추천 (Export Prediction Using Separated Learning Method and Recommendation of Potential Export Countries)

  • 장영진;원종관;이채록
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.69-88
    • /
    • 2022
  • 최근 코로나19 팬데믹으로 인해 전 세계 경제와 외교 상황에 급격한 변화가 일어나고 있으며, 수출 의존도가 높은 한국은 이러한 변화에 큰 영향을 받고 있다. 본 연구에서는 기업의 수출전략 수립 및 의사결정 지원을 위해 차년도 수출액 예측 모델을 구축하고, 모델의 예측 결과를 바탕으로 수출 유망국가 추천 방식을 제안한다. 본 연구에서는 모델이 다양한 정보를 학습할 수 있도록 국가별, 품목별, 거시경제 변수 등 선행 연구에서 중요하게 사용된 변수를 다방면으로 수집하였다. 수집한 데이터를 분석한 결과, 국가와 품목에 따라서 수출액의 분포가 매우 비대칭적인 것을 확인할 수 있었다. 따라서, 모델의 예측 성능을 향상시키고 설명력을 확보하기 위해서 분리학습 방식을 사용하였다. 분리학습은 전체 데이터를 동질적인 하위 그룹으로 분리하고 개별 모델을 구축하는 방식으로, 본 연구에서는 수출액을 기준으로 5개 구간으로 데이터를 분리하였다. 모델 학습 과정에서 구간별 특성을 반영하여 구간1부터 구간4까지는 LightGBM을 사용하고, 구간5는 지수이동평균을 사용하였으며 이를 통해 모델의 예측 성능을 향상시킬 수 있었다. 모델의 설명력 확보를 위해서 추가로 구간별 모델의 SHAP-value를 계산하고 중요도가 높은 변수를 제시했다. 또한, 본 연구에서는 예측 모델을 기반으로 2단계 수출 유망국가 추천 방식을 제안했다. 효율적인 수출 전략 수립을 위해서 BCG 매트릭스와 국가별 점수 산출 방식을 사용하였고, 품목별 유망 국가 순위와 수출 관련 주요 정보들을 제공하였다. 본 연구는 다양한 정보를 학습한 머신러닝 모델로 여러 국가와 품목에 대한 예측을 실시하고, 이 과정에서 분리학습 방식으로 예측 성능을 향상시켰다는 점에서 의의가 있다. 또한, 현재 무역 관련 서비스들이 과거 데이터에 기반한 정보를 제공하고 있음을 고려할 때, 본 연구에서 제안한 예측 모델과 유망국가 추천 방식은 기업들의 미래 수출 전략 수립 및 동향 파악에 유용하게 사용될 수 있을 것으로 기대된다.

고객 간 관계 네트워크가 조직성과에 미치는 영향: 페이스북 기업 팬페이지를 중심으로 (Effects of Customers' Relationship Networks on Organizational Performance: Focusing on Facebook Fan Page)

  • 전수현;곽기영
    • 지능정보연구
    • /
    • 제22권2호
    • /
    • pp.57-79
    • /
    • 2016
  • 최근 소셜 네트워크 서비스는 소비자와의 관계 마케팅 확산 및 확장을 위한 중요한 채널로 인식되며 많은 관심을 받고 있다. 기업이 온라인 환경에서 성공하기 위해서는 기업과 고객 사이의 관계 구축뿐만 아니라 고객들 간의 관계에 초점을 맞출 필요가 있다. 본 연구에서는 페이스북 팬 페이지에 참여하는 사용자들 사이의 네트워크를 분석하여 기업의 비즈니스 성과에 고객 간 네트워크의 구조적 특성이 미치는 영향을 실증적으로 분석하였다. 이를 위해 네트워크 데이터는 코스피 상장 기업 가운데 페이스북 팬 페이지에 100개 이상의 게시글을 올린 54개 기업으로부터 수집하였으며, 수집된 네트워크 데이터는 각 사용자를 노드로 하고 동일한 마케팅 활동에 대해 참여한 사용자간의 관계를 링크로 한 원모드 비방향 이진 네트워크(one-mode undirected binary network)이다. 본 연구에서는 이러한 네트워크 데이터를 핸들링하여 사용자들 간의 활동 관계를 분석할 수 있는 네트워크 지표(밀도, 글로벌 클러스터링 계수, 최단거리평균, 직경)를 도출하였으며, 이러한 고객 간 네트워크의 구조적 특징을 파악할 수 있는 지표와 기업의 과거실적(순이익), 그리고 미래 예측성과(토빈의 Q) 간의 관계를 분석하였다. 본 연구는 학문적 관점에서 소셜 미디어 채널을 비즈니스 관점에서 연구하려는 연구자들에게 소셜네트워크분석 방법을 통한 새로운 접근법을 제시한다. 실무적인 관점에서 본 연구는 소셜미디어를 통해 마케팅 활동을 수행하려는 기업의 관리자들에게 네트워크의 지표를 이용한 지능형 마케팅 서비스를 수행할 수 있는 토대를 제공할 것으로 기대한다.

한국의 그린 비즈니스/IT 실태분석을 통한 추진전략 우선순위 도출에 관한 연구 (Development of Korean Green Business/IT Strategies Based on Priority Analysis)

  • 김재경;최주철;최일영
    • Asia pacific journal of information systems
    • /
    • 제20권3호
    • /
    • pp.191-204
    • /
    • 2010
  • Recently, the CO2 emission and energy consumption have become critical global issues to decide the future of nations. Especially, the spread of IT products and the increased use of internet and web applications result in the energy consumption and CO2 emission of IT industry though information technologies drive global economic growth. EU, the United States, Japan and other developed countries are using IT related environmental regulations such as WEEE(Waste Electrical and Electronic Equipment), RoHS(Restriction of the use of Certain Hazardous Substance), REACH(Registration, Evaluation, Authorization and Restriction of CHemicals) and EuP(Energy using Product), and have established systematic green business/IT strategies to enhance the competitiveness of IT industry. For example, the Japan government proposed the "Green IT initiative" for being compatible with economic growth and environmental protection. Not only energy saving technologies but energy saving systems have been developed for accomplishing sustainable development. Korea's CO2 emission and energy consumption continuously have grown at comparatively high rates. They are related to its industrial structure depending on high energy-consuming industries such as iron and steel Industry, automotive industry, shipbuilding industry, semiconductor industry, and so on. In particular, export proportion of IT manufacturing is quite high in Korea. For example, the global market share of the semiconductor such as DRAM was about 80% in 2008. Accordingly, Korea needs to establish a systematic strategy to respond to the global environmental regulations and to maintain competitiveness in the IT industry. However, green competitiveness of Korea ranked 11th among 15 major countries and R&D budget for green technology is not large enough to develop energy-saving technologies for infrastructure and value chain of low-carbon society though that grows at high rates. Moreover, there are no concrete action plans in Korea. This research aims to deduce the priorities of the Korean green business/IT strategies to use multi attribute weighted average method. We selected a panel of 19 experts who work at the green business related firms such as HP, IBM, Fujitsu and so on, and selected six assessment indices such as the urgency of the technology development, the technology gap between Korea and the developed countries, the effect of import substitution, the spillover effect of technology, the market growth, and the export potential of the package or stand-alone products by existing literature review. We submitted questionnaires at approximately weekly intervals to them for priorities of the green business/IT strategies. The strategies broadly classify as follows. The first strategy which consists of the green business/IT policy and standardization, process and performance management and IT industry and legislative alignment relates to government's role in the green economy. The second strategy relates to IT to support environment sustainability such as the travel and ways of working management, printer output and recycling, intelligent building, printer rationalization and collaboration and connectivity. The last strategy relates to green IT systems, services and usage such as the data center consolidation and energy management, hardware recycle decommission, server and storage virtualization, device power management, and service supplier management. All the questionnaires were assessed via a five-point Likert scale ranging from "very little" to "very large." Our findings show that the IT to support environment sustainability is prior to the other strategies. In detail, the green business /IT policy and standardization is the most important in the government's role. The strategies of intelligent building and the travel and ways of working management are prior to the others for supporting environment sustainability. Finally, the strategies for the data center consolidation and energy management and server and storage virtualization have the huge influence for green IT systems, services and usage This research results the following implications. The amount of energy consumption and CO2 emissions of IT equipment including electrical business equipment will need to be clearly indicated in order to manage the effect of green business/IT strategy. And it is necessary to develop tools that measure the performance of green business/IT by each step. Additionally, intelligent building could grow up in energy-saving, growth of low carbon and related industries together. It is necessary to expand the affect of virtualization though adjusting and controlling the relationship between the management teams.

계층적 군집화 기반 Re-ID를 활용한 객체별 행동 및 표정 검출용 영상 분석 시스템 (Video Analysis System for Action and Emotion Detection by Object with Hierarchical Clustering based Re-ID)

  • 이상현;양성훈;오승진;강진범
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.89-106
    • /
    • 2022
  • 최근 영상 데이터의 급증으로 이를 효과적으로 처리하기 위해 객체 탐지 및 추적, 행동 인식, 표정 인식, 재식별(Re-ID)과 같은 다양한 컴퓨터비전 기술에 대한 수요도 급증했다. 그러나 객체 탐지 및 추적 기술은 객체의 영상 촬영 장소 이탈과 재등장, 오클루전(Occlusion) 등과 같이 성능을 저하시키는 많은 어려움을 안고 있다. 이에 따라 객체 탐지 및 추적 모델을 근간으로 하는 행동 및 표정 인식 모델 또한 객체별 데이터 추출에 난항을 겪는다. 또한 다양한 모델을 활용한 딥러닝 아키텍처는 병목과 최적화 부족으로 성능 저하를 겪는다. 본 연구에서는 YOLOv5기반 DeepSORT 객체추적 모델, SlowFast 기반 행동 인식 모델, Torchreid 기반 재식별 모델, 그리고 AWS Rekognition의 표정 인식 모델을 활용한 영상 분석 시스템에 단일 연결 계층적 군집화(Single-linkage Hierarchical Clustering)를 활용한 재식별(Re-ID) 기법과 GPU의 메모리 스루풋(Throughput)을 극대화하는 처리 기법을 적용한 행동 및 표정 검출용 영상 분석 시스템을 제안한다. 본 연구에서 제안한 시스템은 간단한 메트릭을 사용하는 재식별 모델의 성능보다 높은 정확도와 실시간에 가까운 처리 성능을 가지며, 객체의 영상 촬영 장소 이탈과 재등장, 오클루전 등에 의한 추적 실패를 방지하고 영상 내 객체별 행동 및 표정 인식 결과를 동일 객체에 지속적으로 연동하여 영상을 효율적으로 분석할 수 있다.

개인화된 뉴스 서비스를 위한 소셜 네트워크 기반의 콘텐츠 추천기법 (Content-based Recommendation Based on Social Network for Personalized News Services)

  • 홍명덕;오경진;가명현;조근식
    • 지능정보연구
    • /
    • 제19권3호
    • /
    • pp.57-71
    • /
    • 2013
  • 세계에는 수많은 사람들이 살아가고 있고, 사람들의 일상으로부터 매일, 매 시간 단위로 새로운 뉴스가 발생한다. 발생되는 뉴스는 예정된 일과 예상하지 못한 일들을 포함하고 있다. 발생하는 뉴스의 거대한 양과 이를 전달하는 수많은 미디어들로 인해 사람들은 뉴스 콘텐츠를 이용하는데 많은 시간을 소비하게 된다. 하지만 미디어에 시시각각 나타나는 속보와 실시간 이슈의 대부분이 가십 기사로 이루어져 있어 사용자들이 자신의 성향에 맞는 뉴스를 선별하고, 뉴스로부터 정보를 획득하는 것은 쉽지 않은 일이다. 또한 사용자의 관심사가 시간에 따라 변하기 때문에 뉴스 제공에 있어 사용자의 변하는 관심사를 반영하는 것이 요구된다. 본 논문에서는 사용자의 최근 관심사를 기반으로 사용자 선호도에 맞는 뉴스를 제공하기 위한 콘텐츠 기반의 추천 기법 및 시스템을 제안한다. 사용자의 최근 선호도를 파악하기 위하여 소셜 네트워크 서비스인 Facebook 사용자의 정보와 최근 게시글을 이용하여 동적으로 사용자 프로파일을 생성하여 이를 뉴스 서비스에 활용하고, 사용자 선호도에 적합한 뉴스를 추출하기 위해서 뉴스 콘텐츠의 분석을 요구한다. 뉴스 콘텐츠 분석을 위해 미디어에서 제공되는 뉴스의 카테고리를 사용하고, 뉴스 방송원고의 분석 및 주요 키워드 추출을 통해 뉴스 프로파일을 생성한다. 사용자 프로파일과 뉴스 프로파일 간의 유사도 측정을 위해서는 두 프로파일 간 형식의 일치화가 요구되므로 사용자 프로파일을 뉴스 프로파일과 동일한 형태로 생성한다. 사용자가 시스템에 접속하면 시스템은 사용자 프로파일에 명시된 선호도를 기반으로 뉴스 프로파일과의 유사도를 측정하고, 사용자 선호도에 가장 적합한 뉴스들을 제공하게 된다. 또한 사용자에게 제공된 뉴스 프로파일과 다른 뉴스 프로파일들 간에 유사도를 측정하여 유사도가 높은 관련된 뉴스들을 제공하게 된다. 제안한 개인화된 뉴스 서비스의 성능을 평가하기 위해 사용자에게 추천된 뉴스에 대한 사용자 평가와 시스템 예측값의 오차를 기반으로 6Sub-Vectors 벤치마크 알고리즘과 성능 평가를 수행하였고, 실험 결과를 통해 제안한 시스템의 우수성을 입증하였다.

공공디자인에서 스마트 공공시설물의 발전 가능성에 관한 연구 -스마트 도시의 공공시설물 사례를 중심으로- (The Research on the Development Potential of Smart Public Facilities in Public Design - Focusing on examples of public facilities in smart cities -)

  • 손동주
    • 서비스연구
    • /
    • 제13권4호
    • /
    • pp.97-112
    • /
    • 2023
  • 연구 배경: 현대 사회에서 공공디자인의 중요성은 도시 기능과 시민의 삶의 질 향상에 기여하는 데 크게 자리 잡고 있다. 공공시설물은 사용자의 접근성을 높이고, 편리함과 안전성을 제공함으로써 사용자 경험을 풍부하게 하며, 도시의 가치를 높이는 중추적 역할을 해왔다. 이 연구는 공공시설물의 중요성을 인식하고, 도시가 직면한 문제들을 해결하고 지속 가능하며 포용적인 도시로 나아가는 데 있어서 스마트 공공시설물의 발전 가능성을 탐구한 것이다. 연구 방법: 문헌 연구는 스마트 공공시설물에 대한 기존 이론과 연구 결과를 종합적으로 검토한다. 사례 연구는 국내외 도시에서 구현된 스마트 공공시설물의 실제 사례를 분석해 효과, 사용자 만족도, 개선점 등을 도출한다. 분석 및 논의를 통해 사례 연구의 결과를 분석하고, 스마트 공공시설물 발전 가능성에 대해 논의한다. 연구 결과: 스마트 공공시설물이 도시 관리, 에너지 효율성, 안전, 정보 접근성 등 여러 면에서 긍정적인 변화를 불러오고 있음을 확인했다. 또한, 도시 관리 측면에서는 최적화되고, 사회적 포용성, 환경 보호, 시민 참여 촉진, 그리고 기술적 혁신을 촉진하는 중요한 역할을 하고 있다. 이러한 변화는 도시의 물리적 공간과 디지털 기술이 결합한 새로운 도시 형태를 창출하며, 도시의 삶의 질을 향상한다. 결론: 이 연구는 스마트 공공시설물의 서비스 및 디자인 측면의 시사점, 현황과 기능, 그리고 도시환경 및 시민의 삶에 미치는 영향을 탐구했다. 결론적으로, 스마트 공공시설물은 도시 관리의 최적화, 에너지 효율성 향상, 정보 접근성 증진, 사용자 중심의 디자인, 상호작용 증대 및 사회적 포용의 긍정적인 변화를 불러왔다. 기술혁신과 공공시설물의 통합으로 도시를 효율적이고 능동적으로 만들며, 데이터 기반 의사결정과 최적화된 서비스 제공을 가능케 했다. 이러한 발전은 도시의 물리적 공간과 디지털 기술의 결합을 통해 새로운 형태의 도시환경 창출을 가능케 한다. 스마트 공공시설물의 발전은 도시 개발의 방향을 제시하며, 미래의 도시는 더 지능화되고 능동적이며, 사용자 친화적인 공간으로 변화를 꾀할 수 있다. 따라서 공공디자인에서 중추적 역할을 담당할 것이다. 또한, 도시환경과 시민의 삶의 질을 개선하는 데 크게 기여할 수 있다.

고객 맞춤형 서비스를 위한 관객 행동 기반 감정예측모형 (The Audience Behavior-based Emotion Prediction Model for Personalized Service)

  • 유은정;안현철;김재경
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.73-85
    • /
    • 2013
  • 정보기술의 비약적 발전에 힘입어, 오늘날 기업들은 지금까지 축적한 고객 데이터를 기반으로 맞춤형 서비스를 제공하는 것에 많은 관심을 가지고 있다. 고객에게 소구하는 맞춤형 서비스를 효과적으로 제공하기 위해서는 우선 그 고객이 처한 상태나 상황을 정확하게 인지하는 것이 중요하다. 특히, 고객에게 서비스가 전달되는 이른바 진실의 순간에 해당 고객의 감정 상태를 정확히 인지할 수 있다면, 기업은 더 양질의 맞춤형 서비스를 제공할 수 있을 것이다. 이와 관련하여 사람의 얼굴과 행동을 이용하여 사람의 감정을 판단하고 개인화 서비스를 제공하기 위한 연구가 활발하게 이루어지고 있다. 얼굴 표정을 통해 사람의 감정을 판단하는 연구는 좀 더 미세하고 확실한 변화를 통해 정확하게 감정을 판단할 수 있지만, 장비와 환경의 제약으로 실제 환경에서 다수의 관객을 대상으로 사용하기에는 다소 어려움이 있다. 이에 본 연구에서는 Plutchik의 감정 분류 체계를 기반으로 사람들의 행동을 통해 감정을 추론해내는 모형을 개발하는 것을 목표로 한다. 본 연구는 콘텐츠에 의해 유발된 사람들의 감정적인 변화를 사람들의 행동 변화를 통해 판단하고 예측하는 모형을 개발하고, 4가지 감정 별 행동 특징을 추출하여 각 감정에 따라 최적화된 예측 모형을 구축하는 것을 목표로 한다. 모형 구축을 위해 사람들에게 적절한 감정 자극영상을 제공하고 그 신체 반응을 수집하였으며, 사람들의 신체 영역을 나누었다. 특히, 모션캡쳐 분야에서 널리 쓰이는 차영상 기법을 적용하여 사람들의 제스쳐를 추출 및 보정하였다. 이후 전처리 과정을 통해 데이터의 타임프레임 셋을 20, 30, 40 프레임의 3가지로 설정하고, 데이터를 학습용, 테스트용, 검증용으로 구분하여 인공신경망 모형을 통해 학습시키고 성과를 평가하였다. 다수의 일반인들을 대상으로 수집된 데이터를 이용하여 제안 모형을 구축하고 평가한 결과, 프레임셋에 따라 예측 성과가 변화함을 알 수 있었다. 감정 별 최적 예측 성과를 보이는 프레임을 확인할 수 있었는데, 이는 감정에 따라 감정의 표출 시간이 다르기 때문인 것으로 판단된다. 이는 행동에 기반한 제안된 감정예측모형이 감정에 따라 효과적으로 감정을 예측할 수 있으며, 실제 서비스 환경에서 사용할 수 있는 효과적인 알고리즘이 될 수 있을 것으로 기대할 수 있다.

SVM을 이용한 VKOSPI 일 중 변화 예측과 실제 옵션 매매에의 적용 (VKOSPI Forecasting and Option Trading Application Using SVM)

  • 라윤선;최흥식;김선웅
    • 지능정보연구
    • /
    • 제22권4호
    • /
    • pp.177-192
    • /
    • 2016
  • 기계학습(Machine Learning)은 인공 지능의 한 분야로, 데이터를 이용하여 기계를 학습시켜 기계 스스로가 데이터 분석 및 예측을 하게 만드는 것과 관련한 컴퓨터 과학의 한 영역을 일컫는다. 그중에서 SVM(Support Vector Machines)은 주로 분류와 회귀 분석을 목적으로 사용되는 모델이다. 어느 두 집단에 속한 데이터들에 대한 정보를 얻었을 때, SVM 모델은 주어진 데이터 집합을 바탕으로 하여 새로운 데이터가 어느 집단에 속할지를 판단해준다. 최근 들어서 많은 금융전문가는 기계학습과 막대한 데이터가 존재하는 금융 분야와의 접목 가능성을 보며 기계학습에 집중하고 있다. 그러면서 각 금융사는 고도화된 알고리즘과 빅데이터를 통해 여러 금융업무 수행이 가능한 로봇(Robot)과 투자전문가(Advisor)의 합성어인 로보어드바이저(Robo-Advisor) 서비스를 발 빠르게 제공하기 시작했다. 따라서 현재의 금융 동향을 고려하여 본 연구에서는 기계학습 방법의 하나인 SVM을 활용하여 매매성과를 올리는 방법에 대해 제안하고자 한다. SVM을 통한 예측대상은 한국형 변동성지수인 VKOSPI이다. VKOSPI는 금융파생상품의 한 종류인 옵션의 가격에 영향을 미친다. VKOSPI는 흔히 말하는 변동성과 같고 VKOSPI 값은 옵션의 종류와 관계없이 옵션 가격과 정비례하는 특성이 있다. 그러므로 VKOSPI의 정확한 예측은 옵션 매매에서의 수익을 낼 수 있는 중요한 요소 중 하나이다. 지금까지 기계학습을 기반으로 한 VKOSPI의 예측을 다룬 연구는 없었다. 본 연구에서는 SVM을 통해 일 중의 VKOSPI를 예측하였고, 예측 내용을 바탕으로 옵션 매매에 대한 적용 가능 여부를 실험하였으며 실제로 향상된 매매 성과가 나타남을 증명하였다.

웰니스워드넷: 비정형데이터와 상황적 긍부정성에 기반하여 주관적 웰빙 상태를 무구속적으로 모니터링하기 위한 워드넷 개발 (WellnessWordNet: A Word Net for Unconstrained Subjective Well-Being Monitor ing Based on Unstructured Data and Contextual Polarity)

  • 송영은;남수현;권오병
    • 지능정보연구
    • /
    • 제22권3호
    • /
    • pp.1-21
    • /
    • 2016
  • 주관적 웰빙 서비스(subjective well-being service)는 Wellness IT의 주요 서비스이며 개인의 주관적 웰빙 상태를 무구속적이고 비용 효율적으로 측정하는 방법이 중요하다. 이를 위해 감성어휘사전을 활용할 수 있으나 감성어만으로 주관적 웰빙 상태를 측정할 수는 없으며 웰니스 어휘 사전이 별도로 구축될 필요가 있다. 더욱이 기존의 감성어휘사전은 동일한 감정어에 대해 한가지만의 감성값을 제공함으로써 그 용어를 사용한 사람의 특징에 따라 감성값이 변경될 수 있다는 점을 간과하고 있다. 따라서 본 연구의 목적은 현존하는 감성어휘사전 중에서 표현력이 가장 뛰어난 SenticNet을 기반으로 하여 SenticNet에서 제공하는 정보를 통해 스트레스, 우울, 분노, 행복감 등 웰니스 상태를 추정한 결과를 추가한 WellnessWordNet 을 개발하는 것이다. 또한 실제 사람들을 대상으로 WellnessWordNet 에 근거한 웰니스 상태 추정 정확도를 검증해 보았다. 본 논문의 독창성은 WellnessWordNet 웰니스 상태 언어에 대한 값을 제공할 뿐더러, 성별이나 연령과 같은 사람의 특성에 따라 다른 감성값을 제공하는 최초의 감성어휘사전이라는 것이다.

합성곱 신경망(Convolutional Neural Network)을 활용한 지능형 유사상표 검색 모형 개발 (A Study on Similar Trademark Search Model Using Convolutional Neural Networks)

  • 윤재웅;이석준;송칠용;김연식;정미영;정상일
    • 경영과정보연구
    • /
    • 제38권3호
    • /
    • pp.55-80
    • /
    • 2019
  • 전 세계적으로 온라인 상거래 시장 규모가 성장함에 따라 국제 및 국내 기업의 상표권이 침해되는 사례가 빈번하게 발생하고 있다. 다양한 연구 및 보고서에 따르면, 해외 기업 또는 개인이 국내 기업의 상표권을 침해한 사례와, 국내 기업 간 발생하는 상표권 분쟁 사례가 증가하고 있는 것으로 나타나고 있으며, 특허청의 보고서에 따르면 기업의 규모가 작을수록 상표보호를 위한 사전 예방활동을 수행하지 않는다고 응답한 비율이 높은 것으로 나타났다. 이러한 문제는 선등록 상표에 대한 사전조사 또는 자사의 상표보호를 위해 소요되는 인력과 비용이 원인인 것으로 판단된다. 한편, 국내에서 선등록상표에 대한 사전조사를 위해 상용되는 서비스를 살펴보면 상표 이미지를 활용한 검색 서비스를 제공하고 있지 않은 상황이다. 이로 인해 국내 대다수의 기업은 자사의 상표 보호 및 선등록 상표에 대한 사전조사 수행 시 방대한 양의 선등록된 상표를 수작업으로 조사해야하는 문제가 발생한다. 따라서 본 연구에서는 기업의 상표권 보호 및 선등록 상표에 대한 사전조사 수행 시 투입되는 인력 및 비용절감과, 국내외에서 발생하고 있는 상표권 침해 문제를 해결하기 위해 합성곱 신경망 기법을 활용한 지능형 유사 상표 검색 모델을 개발하고자 한다. 지적 재산권 전문가가 선정한 테스트 데이터를 활용하여 지능형 유사 상표 검색 모델의 정확도를 측정한 결과 ResNet V1 101의 성능이 가장 높게 나타났다. 해당 결과를 통해 이미지 분류 알고리즘이 단순한 사물 인식 분야뿐만 아니라 이미지 검색 분야에서도 높은 성능을 나타낸다는 것을 실증적으로 입증했으며, 본 연구는 실제 상표 이미지 데이터를 활용했다는 측면에서 실제 산업 환경에서 활용성이 높을 것으로 사료된다.