• Title/Summary/Keyword: Intelligent Robots

Search Result 544, Processing Time 0.024 seconds

Mobile Performance Evaluation of Mecanum Wheeled Omni-directional Mobile Robot (메카넘휠 기반의 전방향 이동로봇 주행성능 평가)

  • Chu, Baeksuk;Sung, Young Whee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.374-379
    • /
    • 2014
  • Mobile robots with omni-directional wheels can generate instant omni-directional motion without requiring extra space to change the direction of the body. Therefore, they are capable of moving in an arbitrary direction under any orientation even in narrow aisles or tight areas. In this research, an omni-directional mobile robot based on Mecanum wheels was developed to achieve omni-directionality. A CompactRIO embedded real-time controller and C series motion and I/O modules were employed in the control system design. Ultrasonic sensors installed on the front and lateral sides were utilized to measure the distance between the mobile robot and the side wall of a workspace. Through intensive experiments, a performance evaluation of the mobile robot was conducted to confirm its feasibility for industrial purposes. Mobility, omni-directionality, climbing capacity, and tracking performance of a squared trajectory were selected as performance indices to assess the omni-directional mobile robot.

Intelligent Navigation of a Mobile Robot based on Intention Inference of Obstacles (장애물의 의도 추론에 기초한 이동 로봇의 지능적 주행)

  • Kim, Seong-Hun;Byeon, Jeung-Nam
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.2
    • /
    • pp.21-34
    • /
    • 2002
  • Different from ordinary mobile robots used in a well-structured industrial workspace, a guide mobile robot for the visually impaired should be designed in consideration of a moving obstacle, which mostly refers to pedestrians in intentional motions. Thus, the navigation of the guide robot can be facilitated if the intention of each detected obstacle can be known in advance. In this paper, we propose an inference method to understand an intention of a detected obstacle. In order to represent the environment with ultrasonic sensors, the fuzzy grid-type map is first constructed. Then, we detect the obstacle and infer the intention for collision avoidance with the CLA(Centroid of Largest Area) point of the fuzzy grid-type map. To verify the proposed method, some experiments are performed.

Development of Educational Robot Platform Based on Omni-directional Mobile Mechanism (전방향 이동 메커니즘 기반의 교육용 로봇 플랫폼 개발)

  • Chu, Baeksuk;Sung, Young Whee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1161-1169
    • /
    • 2013
  • In this paper an omni-directional mobile robot is suggested for educational robot platform. Comparing to other robots, a mobile robot can be easily designed and manufactured due to its simple geometric structure. Moreover, since it is required to have low DOF motion on planar space, fabrication of control system is also simple. In this research, omni-directional wheels were adopted to remove the non-holonomic characteristic of conventional wheels and facilitate control system design. Firstly, geometric structure of a Mecanum wheel which is a most frequently used omni-directional wheel was demonstrated. Then, the organization of the mobile platform was suggested in aspects of mechanism manufacturing and electronic hardware design. Finally, a methodology of control system development was introduced for educational purpose. Due to an intuitive motion generating ability, simple hardware composition, and convenient control algorithm applicability, the omni-directional mobile robot suggested in this research is expected to be a promising educational platform.

Region-based Q-learning for intelligent robot systems (지능형 로보트 시스템을 위한 영역기반 Q-learning)

  • Kim, Jae-Hyeon;Seo, Il-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.4
    • /
    • pp.350-356
    • /
    • 1997
  • It is desirable for autonomous robot systems to possess the ability to behave in a smooth and continuous fashion when interacting with an unknown environment. Although Q-learning requires a lot of memory and time to optimize a series of actions in a continuous state space, it may not be easy to apply the method to such a real environment. In this paper, for continuous state space applications, to solve problem and a triangular type Q-value model\ulcorner This sounds very ackward. What is it you want to solve about the Q-value model. Our learning method can estimate a current Q-value by its relationship with the neighboring states and has the ability to learn its actions similar to that of Q-learning. Thus, our method can enable robots to move smoothly in a real environment. To show the validity of our method, navigation comparison with Q-learning are given and visual tracking simulation results involving an 2-DOF SCARA robot are also presented.

  • PDF

Real-Time Fuzzy Control for Dual-Arm with 8 Joints Robot Using the DSPs(TMS320C80) (DSPs(TMS320C80)을 이용한 8축 듀얼 아암 로봇의 실시간 퍼지제어)

  • 한성현;김종수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.1
    • /
    • pp.35-47
    • /
    • 2004
  • In this paper presents a new approach to the design and real-time implementation of fuzzy control system based-on digital signal processors(DSP:IMS320C80) in order to improve the precision and robustness for system of industrial robot(Dual-Arm with 8 joint Robot). The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The IMS320C80 is used in implementing real time fuzzy control to provide an enhanced motion control for robot manipulators. In this paper, a Self-Organizing Fuzzy Controller(SOFC) for the industrial robot manipulator with a actuator located at the base is studied. A fuzzy logic composed of linguistic conditional statements is employed by defining the relations of input-output variables of the controller. In the synthesis of a FLC(Fuzzy Logic Controller), one of the most difficult problems is the determination of linguistic control rules from the human operators. To overcome this difficult SOFC is proposed for a hierarchical control structure consisting of basic and high levels that modify control rules. The proposed SOFC scheme is simple in structure, Int in computation, and suitable for implementation of real-time control. Performance of the SOFC is illustrated by simulation and experimental results for a Dual-Arm robot with eight joints.

A Study on Gain Scheduling Programming with the Fuzzy Logic Controller of a 6-axis Articulated Robot using LabVIEW® (LabVIEW®를 이용한 6축 수직 다관절 로봇의 퍼지 로직이 적용된 게인 스케줄링 프로그래밍에 관한 연구)

  • Kang, Seok-Jeong;Chung, Won-Jee;Park, Seung-Kyu;Noe, Sung Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.113-118
    • /
    • 2017
  • As the demand for industrial robots and Automated Guided Vehicles (AGVs) increases, higher performance is also required from them. Fuzzy controllers, as part of an intelligent control system, are a direct control method that leverages human knowledge and experience to easily control highly nonlinear, uncertain, and complex systems. This paper uses a $LabVIEW^{(R)}-based$ fuzzy controller with gain scheduling to demonstrate better performance than one could obtain with a fuzzy controller alone. First, the work area was set based on forward kinematics and inverse kinematics programs. Next, $LabVIEW^{(R)}$ was used to configure the fuzzy controller and perform the gain scheduling. Finally, the proposed fuzzy gain scheduling controller was compared with to controllers without gain scheduling.

A Task Planning System of a Steward Robot with a State Partitioning Technique (상태 분할 기법을 이용한 집사 로봇의 작업 계획 시스템)

  • Kim, Yong-Hwi;Lee, Hyong-Euk;Kim, Heon-Hui;Park, Kwang-Hyun;Bien, Z. Zenn
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.1
    • /
    • pp.23-32
    • /
    • 2008
  • This paper presents a task planning system for a steward robot, which has been developed as an interactive intermediate agent between an end-user and a complex smart home environment called the ISH (Intelligent Sweet Home) at KAIST (Korea Advanced Institute of Science and Technology). The ISH is a large-scale robotic environment with various assistive robots and home appliances for independent living of the elderly and the people with disabilities. In particular, as an approach for achieving human-friendly human-robot interaction, we aim at 'simplification of task commands' by the user. In this sense, a task planning system has been proposed to generate a sequence of actions effectively for coordinating subtasks of the target subsystems from the given high-level task command. Basically, the task planning is performed under the framework of STRIPS (Stanford Research Institute Problem Solver) representation and the split planning method. In addition, we applied a state-partitioning technique to the backward split planning method to reduce computational time. By analyzing the obtained graph, the planning system decomposes an original planning problem into several independent sub-problems, and then, the planning system generates a proper sequence of actions. To show the effectiveness of the proposed system, we deal with a scenario of a planning problem in the ISH.

  • PDF

Real Time Neural Controller Design of Industrial Robot Using Digital Signal Processors (디지탈 신호 처리기를 사용한 산업용 로봇의 실시간 뉴럴 제어기 설계)

  • 김용태;한성현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.759-763
    • /
    • 1996
  • This paper presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. Robotic manipulators have become increasingly important in the field of flexible automation. High speed and high-precision trajectory tracking are indispensable capabilities for their versatile application. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The TMS320C31 is used in implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme, the networks introduced are neural nets with dynamic neurons, whose dynamics are distributed over all the network nodes. The nets are trained by the distributed dynamic back propagation algorithm. The proposed neural network control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Performance of the neural controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

Design of a Web-based Autonomous Under-water Mobile Robot Controller Using Neuro-Fuzzy in the Dynamic Environment (동적 환경에서 뉴로-퍼지를 이용한 웹 기반 자율 잠수 이동로봇 제어기 설계)

  • 최규종;신상운;안두성
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.1
    • /
    • pp.77-83
    • /
    • 2003
  • Autonomous mobile robots based on the Web have been already used in public places such as museums. There are many kinds of problems to be solved because of the limitation of Web and the dynamically changing environment. We present a methodology for intelligent mobile robot that demonstrates a certain degree of autonomy in navigation applications. In this paper, we focus on a mobile robot navigator equipped with neuro-fuzzy controller which perceives the environment, make decisions, and take actions. The neuro-fuzzy controller equipped with collision avoidance behavior and target trace behavior enables the mobile robot to navigate in dynamic environment from the start location to goal location. Most telerobotics system workable on the Web have used standard Internet techniques such as HTTP, CGI and Scripting languages. However, for mobile robot navigations, these tools have significant limitations. In our study, C# and ASP.NET are used for both the client and the server side programs because of their interactivity and quick responsibility. Two kinds of simulations are performed to verify our proposed method. Our approach is verified through computer simulations of collision avoidance and target trace.

Positioning of a Leader Robot in a Leader-Follower Robot Using Low-Cost Infrared(IR) Distance Sensors (저가형 적외선 거리 센서를 이용한 선도-추종 로봇시스템에서 선도로봇의 위치인식)

  • Sanjaakhand, Battuya;Jang, Moon-Suk;Cha, Dong-Hyuk
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.275-283
    • /
    • 2020
  • A leader-follower robot system using low cost small mobile robots has been developed. Sine the developed mobile robot is made of widely used low cost parts, it can be built easily and fastly. Characteristics of the developed sensor array composed of seven low-cost infrared(IR) distance sensors has been investigated, and a positioning algorithm of the reader robot is proposed. Through a series of experiments, it has been verified that the proposed algorithm can detect the position of the reader robot well.