• 제목/요약/키워드: Intelligent Personalized System

검색결과 171건 처리시간 0.03초

RFID 모바일 기기용 실내.외 체험학습 시스템 설계 및 구현 (A Design and Implementation of Learning System to Support Indoor and Outdoor Field Trips Using RFID Mobile Device)

  • 유정수;백현기
    • 정보교육학회논문지
    • /
    • 제14권4호
    • /
    • pp.527-536
    • /
    • 2010
  • 유비쿼터스 컴퓨팅과 모바일 기술은 식물원, 공원, 박물관이나 교실 등과 같은 다양한 실내외 공간에서의 참신한 학습 경험들을 가능하게 하는 새로운 기술이다. 본 연구에서는 체험학습자들이 유비쿼터스 환경의 실내외 공간에서 RFID 리더기가 부착된 모바일기기를 가지고 체험학습이 가능한 시스템을 개발하였다. 개발된 시스템은 학습자가 학습자의 학습 수준에 따라 학습 내용을 제공하여 개인별 학습 활동이 가능하도록 설계하였다. 실험결과 학습자들은 RFID 태그가 부착된 체험학습장에서의 체험학습에 적극적으로 흥미를 느꼈다.

  • PDF

협업 필터링 기법을 활용한 개인화된 상품 추천 방법론 개발에 관한 연구 (A Personalized Recommendation Methodology based on Collaborative Filtering)

  • Kim, Jae-Kyeong;Suh, Ji-Hae;Ahn, Do-Hyun;Cho, Yoon-Ho
    • 지능정보연구
    • /
    • 제8권2호
    • /
    • pp.139-157
    • /
    • 2002
  • 본 연구에서는 기존 협업 필터링의 문제점을 해결할 수 있는 효율적인 상품추천 방법론을 제시하고자 한다. 연구에서 제시하는 상품추천 방법론은 기존 협업 필터링 알고리즘의 데이터 희박성 문제 및 동의어 문제를 극복하기 위하여 판매 데이터로 구성된 제품 계층도(Product Taxonomy)를 이용하며, 이 계층도를 기반으로 한 연관 규칙(association rule)과 의사결정 나무를 사용한다. 본 연구에서는 제시한 방법론을 단계별로 설명하였을 뿐만 아니라, 실제 H 백화점 데이터를 이용하여 적용하였다. 다양한 경우에 대하여 실험을 한 결과, 기존의 협업 필터링 알고리즘이 갖고있는 문제점을 상당히 해결하였음을 제시하였다. 이 연구에서 제시한 상품 추천 방법론은 현재 기업이 직면한 경쟁환경 하에서 고객이 과연 누구이며, 고객이 진정 무엇을 원하고 있는지를 파악하는데 도움을 줄 것이며, 고객관계관리 (CRM)를 효율적으로 구현하는 방법론으로 사용될 것으로 기대된다.

  • PDF

CNN 기반 리뷰 유용성 점수 예측을 통한 개인화 추천 서비스 성능 향상에 관한 연구 (A Study on Enhancing Personalization Recommendation Service Performance with CNN-based Review Helpfulness Score Prediction)

  • 이청용;이병현;이흠철;김재경
    • 지능정보연구
    • /
    • 제27권3호
    • /
    • pp.29-56
    • /
    • 2021
  • 전자상거래 시장이 빠르게 성장하면서 다양한 유형의 제품이 출시되고 있으며, 이로 인해 사용자들은 구매 의사결정과정에 많은 시간이 소요되는 정보 과부하 문제에 직면하고 있다. 따라서 사용자에게 맞춤형 제품 및 서비스를 제공해줄 수 있는 개인화 추천 서비스의 중요성이 대두되고 있다. 대표적으로 Netflix, Amazon, Google 등 세계적 기업은 개인화 추천 서비스를 도입하여 사용자의 구매 의사결정을 지원하고 있다. 이에 따라 사용자의 정보탐색 비용이 감소하는 효과가 나타났고, 기업의 매출 상승에도 긍정적인 영향을 끼치고 있다. 기존 개인화 추천 서비스 관련 연구에서 주로 사용된 협업필터링(Collaborative Filtering, CF) 기법은 정량화된 정보를 활용하여 사용자의 선호도를 예측하였다. 그러나 정량화된 정보만을 활용하면 사용자의 구매 의도는 고려하지 못하므로 추천 성능이 저하될 수 있다는 문제점이 제기되고 있다. 이와 같은 기존 연구의 문제점을 개선하기 위해 최근에는 사용자가 작성한 리뷰를 활용한 개인화 추천 서비스 연구가 활발히 진행되고 있다. 그러나 리뷰에는 광고성 내용, 거짓 후기, 의미를 전혀 파악할 수 없거나 제품과 관련 없는 내용 등 구매의사결정을 저해하는 요소들이 포함되어 있다. 이러한 요소들이 포함된 리뷰를 활용하여 추천 서비스를 제공하게 되면, 추천 성능이 저하되는 문제가 발생할 수 있다. 따라서 본 연구에서는 이러한 문제점을 개선하기 위해 Convolutional Neural Network(CNN) 기반 리뷰 유용성 점수 예측을 통한 새로운 추천 방법론을 제안하였다. 본 연구에서 제안하는 유용한 리뷰를 포함하는 방법론과 기존 모든 선호도 평점을 고려하는 추천 방법론을 비교한 결과, 본 연구에서 제안한 방법론이 더 우수한 예측 성능을 나타내고 있음을 확인할 수 있었다. 또한 본 연구의 결과는 리뷰 유용성에 대한 정보를 개인화 추천 서비스에 반영하면 전통적인 CF의 성능을 향상할 수 있음을 시사한다.

복합환승센터 통합운영시스템 구축방안에 관한 연구 (A Study on Implementation Integrated Operation & Management System for Intermodal Connectivity Center)

  • 김성은;임정실;문영준;오재학;이원영
    • 한국ITS학회 논문지
    • /
    • 제10권4호
    • /
    • pp.24-35
    • /
    • 2011
  • 최근 정부에서는 녹색성장 패러다임에 따른 대중교통 중심의 교통체계 변환을 모색하고 있으며 이에 따라 교통연계 환승 체계의 효율성 향상을 위해 대규모 복합환승센터 구축사업을 적극적으로 추진하고 있다. 그러나 현재 운영 중인 김포공항, 사당역, 광명역 등 중소규모의 환승센터 이용자들의 설문결과 밀집된 시설 및 혼재된 교통수단으로 인해 대중교통 환승에 많은 어려움을 겪고 있는 것으로 나타났다. 새로 구축될 대규모 복합환승센터의 경우 다양한 대중교통의 연계와 여러가지 상업 및 문화 시설의 복합화로 인해 이용자들에게 좀 더 명확하고 효율적인 정보제공이 필요한 것으로 지적되고 있다. 급속한 IT기술의 발달로 실내외 위치측위 및 모바일 기반 정보제공 등의 기술은 이용자들이 원하는 여러 가지 교통정보를 제공할 수 있으나 복합환승센터에서 교통수단과 연계환승시설을 통합하여 개인별 맞춤형 정보화 수준으로는 제공되지 못하고 있는 실정이다. 본 연구에서는 복합환승센터의 대규모 공간적 범위에서 이용자들에게 환승과 관련된 정보를 위치기반 시설정보, 경로안내 등과 융합하여 맞춤형으로 서비스를 제공하기 위한 통합운영시스템의 구축방안을 제안한다. 이를 위해 국내외 환승센터 이용현황과 정보제공서비스를 분석한 후 복합환승센터의 통합운영시스템 구축을 위한 서비스정의, 서브시스템 도출 및 관련 기술을 정의하고 이를 김포공항 국내선 테스트베드에 적용한 예를 제시한다.

적응형 사용자 프로파일기법과 검색 결과에 대한 실시간 필터링을 이용한 개인화 정보검색 시스템 (PIRS : Personalized Information Retrieval System using Adaptive User Profiling and Real-time Filtering for Search Results)

  • 전호철;최중민
    • 지능정보연구
    • /
    • 제16권4호
    • /
    • pp.21-41
    • /
    • 2010
  • 본 논문은 다양한 사용자의 개인적 검색요구를 충족시키지 못하는 기존 검색시스템의 문제점을 해결하기 위해 사용자의 묵시적 피드백을 이용한 적응형 사용자 기호정보 기반의 개인화 검색을 실현하고, 검색결과에 대한 실시간 필터링을 통해 사용자에게 적합한 검색 결과를 제공하는 시스템을 제안한다. 기존의 검색 시스템들은 검색의도의 불확실성 때문에 사용자의 검색실패율이 높다. 검색 의도의 불확실성은 동일한 사용자가 "java"와 같은 다의어에 대해 동일한 질의어를 사용하더라도 다른 검색 결과를 원할 수 있다는 것이며, 단어의 수가 적을수록 불확실성은 가중될 것이다. 실시간 필터링은 사용자의 도메인 지정여부에 따라 주어진 도메인에 해당하는 웹문서들만 추출하거나, 적절한 도메인을 추론하고 해당하는 웹문서들만 검색 결과로 보여주는 것으로, 일반적인 디렉토리 검색과 유사하지만 모든 웹문서에 대해 이루어진다는 것과 실시간으로 분류된다는 것이 다르다. 실시간 필터링을 개인화에 활용함으로써 검색 결과의 수를 줄이고 검색만족도를 개선했다. 본 논문에서 생성한 기호정보파일은 계층적 구조로 이루어지며, 상황정보의 반영이 가능하기 때문에 의도의 불확실성을 해결 할 수 있다. 또한 사용자의 도메인별 웹문서 검색 동작을 효과적으로 추적(track) 할 수 있으며, 사용자의 기호 변화를 적절하게 알아낼 수 있다. 각 사용자 식별을 위해 IP address를 사용했으며, 기호정보파일은 사용자의 검색 행동에 대한 관찰을 기반으로 지속적으로 갱신된다. 또한 사용자의 검색결과에 대한 행동 관찰을 통해, 사용자 기호를 인지하고, 기호정보를 동적으로 반영했으며, 검색결과에 대한 만족도를 측정했다. 기호정보파일과 반영비율은 사용자가 검색을 수행할 때 시스템에 의해 생성되거나 갱신된다. 실험결과 적응형 사용자 기호정보파일과 실시간 필터링을 함께 사용함으로써, 상위 10개의 검색결과 중 평균 4.7개의 결과들에 대해 만족하는 것으로 나타났으며, 이는 구글의 결과에 비해 약 23.2% 향상된 만족도를 나타내었다.

클러스터링 기반 사례기반추론을 이용한 웹 개인화 추천시스템 (A Web Personalized Recommender System Using Clustering-based CBR)

  • 홍태호;이희정;서보밀
    • 지능정보연구
    • /
    • 제11권1호
    • /
    • pp.107-121
    • /
    • 2005
  • 최근, 추천시스템과 협업 필터링에 대한 연구가 학계와 업계에서 활발하게 이루어지고 있다. 하지만, 제품 아이템들은 다중 값 속성을 가질 수 있음에도 불구하고, 기존의 연구들은 이러한 다중 값 속성을 반영하지 못하고 있다. 이러한 한계를 극복하기 위하여, 본 연구에서는 추천시스템을 위한 새로운 방법론을 제시하고자 한다. 제안된 방법론은 제품 아이템에 대한 클러스터링 기법에 기반하여 다중 값 속성을 팔용하며, 정확한 추천을 위하여 협업 필터링을 적용한다. 즉, 사용자간의 상관관계만이 아니라 아이템간의 상관관계를 고려하기 위하여, 사용자 클러스터링에 기반한 사례기반추론과 아이템 속성 클러스터링에 기반한 사례기반추론 모두가 협업 필터링에 적용되는 것이다. 다중 값 속성에 기반하여 아이템을 클러스터링 함으로써, 아이템의 특징이 명확하게 식별될 수 있다. MovieLens 데이터를 이용하여 실험을 하였으며, 제안된 방법론이 기존 방법론의 성능을 능가한다는 결과를 얻을 수 있었다.

  • PDF

오피니언마이닝을 이용한 사용자 맞춤 장소 추천 시스템 (Location Recommendation Customize System Using Opinion Mining)

  • 최은정;김동근
    • 한국정보통신학회논문지
    • /
    • 제21권11호
    • /
    • pp.2043-2051
    • /
    • 2017
  • 최근 빅데이터 분야의 높아진 관심과 더불어 빅데이터의 처리를 통한 응용 분야에 대한 관심도 높아지고 있다. 개인의 감성을 파악할 수 있는 오피니언마이닝은 사용자 개인 맞춤 서비스 제공 분야에서 많이 이용되고 있는 빅데이터 처리 기법이다. 이를 바탕으로 본 논문에서는 사용자들의 장소에 대한 텍스트 형태의 리뷰를 오피니언마이닝 기법으로 처리하고 k-means 클러스터링 작업을 통해 사용자의 감성을 분석하였다. 클러스터링 작업으로 분류된 비슷한 범주의 감성을 가진 사용자들끼리 동일한 수치 값을 부여한다. 부여된 수치 값으로 협업 필터링 추천 시스템을 이용해 선호도를 예측하고 예측 값이 높은 장소 순으로 지도위에 마커와 함께 내용을 표시하여 사용자에게 추천내용을 보여줄 수 있는 방안을 제안하였다.

셋톱박스 오디언스 타겟팅을 위한 세션 기반 개인화 추천 시스템 개발 (Personalized Session-based Recommendation for Set-Top Box Audience Targeting)

  • 차지수;정구섭;김우영;양재원;백상덕;이원준;장서호;박태준;정찬우;김우주
    • 지능정보연구
    • /
    • 제29권2호
    • /
    • pp.323-338
    • /
    • 2023
  • 셋톱박스 오디언스(TV 시청자) 타겟팅의 핵심은 오디언스의 시청패턴을 분석하여 광고의 효과성이 높을 것으로 예상되는 오디언스에게 맞춤형 광고를 내보내는 것이다. 세션 기반 추천 시스템은 인터넷 광고 추천, 유저 검색 기록 기반 추천 등에 많이 이용되고 있지만, TV 광고의 측면에서 셋톱박스 데이터 수집의 어려움을 이유로 연구하기에 어려움이 있었다. 또한 오디언스 개인의 식별정보가 있는 데이터에서, 오디언스의 선호가 반영되는 시청 패턴을 모델링하는 데 한계가 있었다. 따라서 본 연구에서는 한국방송광고진흥공사(KOBACO)와 방송3사(SKB, KT, LGU+)와의 협업을 통해 익명화된 오디언스 4,847명의 6개월간 시청 데이터를 확보하여 연구를 진행하였으며, 유저-세션-아이템의 계층적 구조를 가지는 개인화 세션 기반 추천 시스템을 개발하여 성능 검증을 진행하였다. 그 결과, 셋톱박스 오디언스 데이터셋과 그 외 검증을 위한 2개의 데이터셋에서 제안된 모델이 비교 대상 모델보다 높은 성능을 보이는 것을 확인하였다.

안드로이드 앱 추천 시스템을 위한 Sybil공격과 Malware의 관계 분석 (Relationship Analysis between Malware and Sybil for Android Apps Recommender System)

  • 오하영
    • 정보보호학회논문지
    • /
    • 제26권5호
    • /
    • pp.1235-1241
    • /
    • 2016
  • 스마트 폰에서 활용할 수 있는 다양한 앱 (Apps)들의 개수가 기하급수적으로 증가함에 따라 개인 맞춤형 앱들을 추천해주는 시스템이 각광받고 있다. 하지만, 다양한 목적으로 악성 앱 (Malware)을 제작하여 구글 플레이(GooglePlay) 사이트에 등록 후 배포하는 경우가 동시에 증가함에 따라 사용자들은 만족도 하강의 단순 피해부터 개인정보 노출 및 금전 탈취 등 심각한 수준의 많은 피해까지 겪고 있다. 또한, 소셜 네트워크가 발전함에 따라 물리적인한 사용자가 많은 거짓 계정들을 만들어서 구글 플레이 사이트의 각 앱의 평점 (rating)들을 조작하는 시빌 공격(Sybil)도 존재할 수 있다. 이때까지 악성 앱과 시빌 공격 연구는 독립적으로 진행되어 왔다. 하지만 실시간으로 발전하고 있는 지능화된 공격 종류들을 고려했을 때 악성 앱 제작자가 구글 플레이 사이트에 노출 된 평점까지 조작 후 인지도를 높여서 결국 악성 앱을 다운받도록 유도하는 지능화된 공격의 유무를 판단하는 것이 중요하다. 따라서, 본 논문에서는 구글 플레이어 사이트를 직접 크롤링하고 시빌 공격과 악성 앱의 상관관계를 실험적으로 밝힌다. 실험결과, 구글 플레이어 사이트에서는 아직 시빌과 악성 앱의 상관관계가 낮음을 알 수 있었다. 이는 악성 앱 배포자가 인지도 및 평점까지 다수 조작하여 많은 사람들에게 노출되면 다양한 Anti-Virus (AV) 벤더들에게 오히려 더 빨리 탐지되어 목적을 달성할 수 없기 때문에 이를 고려하지 않았거나, 악성 앱 배포자가 악성 앱을 만들고 배포하는 것에만 초점을 두고 사이트 인지도 및 평점 조작까지는 아직 동시에 고려하지 않음으로 해석될 수 있다.

U-불국사 : 실시간 온라인 화재조기감지시스템 (U-Bulguksa: Real-Time and Online Early Fire Detection Systems)

  • 주재훈;임재걸
    • 한국전자거래학회지
    • /
    • 제12권3호
    • /
    • pp.75-93
    • /
    • 2007
  • 본 연구는 900MHz와 2.4GHz의 주파수 대역을 갖는 각각의 센서노드를 무선개인네트워크로 연결하여 불국사의 문화유산을 보호하기 위한 화재조기감지시스템을 구축한 결과에 기반을 두고 있다. 본 연구에서는 먼저 유비쿼터스 센서네트워크에 기반을 둔 문화재관리를 위한 요구사항을 분석하고, 문화재관리에서 필수적인 화재감시 및 조기탐지를 위해 적용한 U-불국사의 개발 사례를 제시한다. 이 사례는 U-불국사의 실현이라는 시간에 따라 변형 또는 훼손되는 각각의 유형문화재에 대한 정보를 실시간 온라인으로 입수하여 이를 토대로 과학적으로 문화재를 관리할 수 있는 시스템인 U-문화재관리와 이들 문화유산에 대한 정보를 현장에서 휴대 단말기로 제공해 주는 U-관광 프로젝트의 초기단계로서 수개월간의 시험운영하고 있는 것이다.

  • PDF