• 제목/요약/키워드: Intelligent Learning

검색결과 1,923건 처리시간 0.022초

Stock and News Application of Intelligent Agent System

  • Kim, Dae-Su
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제3권2호
    • /
    • pp.239-243
    • /
    • 2003
  • Recently, there has been active research conducted on the intelligent agent in various fields. The results have been widely applied to intelligent user-friendly interfaces. In this system, we modeled, designed, and implemented an intelligent agent system that can be applied to stock and news. Some procedures such as login sequence to the web site, process to get stock information, setting stock in concern, intelligent news system module, news analysis module, and news learning module are modeled in detail and described in block diagram level. In our experiment on stock system, it showed quite a useful alarming screen avatar result and also on news system. it successfully rearranged the order of the news according to the user's preferences.

이족보행로봇의 걸음새 제어를 위한 지능형 학습 제어기의 구현 (Implementation of an Intelligent Learning Controller for Gait Control of Biped Walking Robot)

  • 임동철;국태용
    • 전기학회논문지P
    • /
    • 제59권1호
    • /
    • pp.29-34
    • /
    • 2010
  • This paper presents an intelligent learning controller for repetitive walking motion of biped walking robot. The proposed learning controller consists of an iterative learning controller and a direct learning controller. In the iterative learning controller, the PID feedback controller takes part in stabilizing the learning control system while the feedforward learning controller plays a role in compensating for the nonlinearity of uncertain biped walking robot. In the direct learning controller, the desired learning input for new joint trajectories with different time scales from the learned ones is generated directly based on the previous learned input profiles obtained from the iterative learning process. The effectiveness and tracking performance of the proposed learning controller to biped robotic motion is shown by mathematical analysis and computer simulation with 12 DOF biped walking robot.

IRSML: An intelligent routing algorithm based on machine learning in software defined wireless networking

  • Duong, Thuy-Van T.;Binh, Le Huu
    • ETRI Journal
    • /
    • 제44권5호
    • /
    • pp.733-745
    • /
    • 2022
  • In software-defined wireless networking (SDWN), the optimal routing technique is one of the effective solutions to improve its performance. This routing technique is done by many different methods, with the most common using integer linear programming problem (ILP), building optimal routing metrics. These methods often only focus on one routing objective, such as minimizing the packet blocking probability, minimizing end-to-end delay (EED), and maximizing network throughput. It is difficult to consider multiple objectives concurrently in a routing algorithm. In this paper, we investigate the application of machine learning to control routing in the SDWN. An intelligent routing algorithm is then proposed based on the machine learning to improve the network performance. The proposed algorithm can optimize multiple routing objectives. Our idea is to combine supervised learning (SL) and reinforcement learning (RL) methods to discover new routes. The SL is used to predict the performance metrics of the links, including EED quality of transmission (QoT), and packet blocking probability (PBP). The routing is done by the RL method. We use the Q-value in the fundamental equation of the RL to store the PBP, which is used for the aim of route selection. Concurrently, the learning rate coefficient is flexibly changed to determine the constraints of routing during learning. These constraints include QoT and EED. Our performance evaluations based on OMNeT++ have shown that the proposed algorithm has significantly improved the network performance in terms of the QoT, EED, packet delivery ratio, and network throughput compared with other well-known routing algorithms.

학습기반 뉴로-퍼지 시스템을 이용한 휴머노이드 로봇의 지능보행 모델링 (Intelligent Walking Modeling of Humanoid Robot Using Learning Based Neuro-Fuzzy System)

  • 박귀태;김동원
    • 제어로봇시스템학회논문지
    • /
    • 제13권4호
    • /
    • pp.358-364
    • /
    • 2007
  • Intelligent walking modeling of humanoid robot using learning based neuro-fuzzy system is presented in this paper. Walking pattern, trajectory of the zero moment point (ZMP) in a humanoid robot is used as an important criterion for the balance of the walking robots but its complex dynamics makes robot control difficult. In addition, it is difficult to generate stable and natural walking motion for a robot. To handle these difficulties and explain empirical laws of the humanoid robot, we are modeling practical humanoid robot using neuro-fuzzy system based on the two types of natural motions which are walking trajectories on a t1at floor and on an ascent. Learning based neuro-fuzzy system employed has good learning capability and computational performance. The results from neuro-fuzzy system are compared with previous approach.

지능형 헤드헌팅 서비스를 위한 협업 딥 러닝 기반의 중개 채용 서비스 시스템 설계 및 구현 (Design and Implementation of Agent-Recruitment Service System based on Collaborative Deep Learning for the Intelligent Head Hunting Service)

  • 이현호;이원진
    • 한국멀티미디어학회논문지
    • /
    • 제23권2호
    • /
    • pp.343-350
    • /
    • 2020
  • In the era of the Fourth Industrial Revolution in the digital revolution is taking place, various attempts have been made to provide various contents in a digital environment. In this paper, agent-recruitment service system based on collaborative deep learning is proposed for the intelligent head hunting service. The service system is improved from previous research [7] using collaborative deep learning for more reliable recommendation results. The Collaborative deep learning is a hybrid recommendation algorithm using "Recurrent Neural Network(RNN)" specialized for exponential calculation, "collaborative filtering" which is traditional recommendation filtering methods, and "KNN-Clustering" for similar user analysis. The proposed service system can expect more reliable recommendation results than previous research and showed high satisfaction in user survey for verification.

2족 보행로봇의 안정된 걸음걸이를 위한 지능제어 알고리즘의 실시간 실현에 관한 연구 (A study on The Real-Time Implementation of Intelligent Control Algorithm for Biped Robot Stable Locomotion)

  • 노연 후 콩;이우송
    • 한국산업융합학회 논문집
    • /
    • 제18권4호
    • /
    • pp.224-230
    • /
    • 2015
  • In this paper, it is presented a learning controller for repetitive walking control of biped walking robot. We propose the iterative learning control algorithm which can learn periodic nonlinear load change ocuured due to the walking period through the intelligent control, not calculating the complex dynamics of walking robot. The learning control scheme consists of a feedforward learning rule and linear feedback control input for stabilization of learning system. The feasibility of intelligent control to biped robotic motion is shown via dynamic simulation with 25-DOF biped walking robot.

AI 기반 지능형 CCTV 이상행위 탐지 성능 개선 방안 (AI-Based Intelligent CCTV Detection Performance Improvement)

  • 류동주;김승희
    • 융합보안논문지
    • /
    • 제23권5호
    • /
    • pp.117-123
    • /
    • 2023
  • 최근 생성형 Artificial Intelligence(이하 AI)와 인공지능에 대한 수요가 높아짐에 따라, 오남용에 대한 심각성이 대두되고 있다. 그러나, 이상행위 탐지를 극대화한 지능형 CCTV는 군과 경찰에서 범죄 예방에 큰 도움이 되고 있다. AI는 인간이 가르쳐준 대로 학습을 수행한 후, 자가 학습을 진행한다. AI는 학습된 결과에 따라 판단을 하기 때문에, 학습 시 특징을 명확하게 이해해야만 한다. 그러나, 인간이 판단하기에도 모호한 이상한 행위와 비정상 행위의 시각적 판단이 어려운 경우가 많다. 이것을 인공지능의 눈으로 학습하기란 매우 어렵고, 학습을 한 결과는 오탐, 미탐 그리고 과탐이 매우 많아진다. 이에 대해 본 논문에서는 AI의 이상한 행위와 비정상 행위의 학습을 명확하게 하기 위한 기준과 방법을 제시하고, 지능형 CCTV의 오탐, 미탐 그리고 과탐에 대한 판단 능력을 최대화 하기 위한 학습 방안을 제시하였다. 본 논문을 통해, 현재 활용 중인 지능형 CCTV의 인공지능 엔진 성능을 극대화가 가능하고, 오탐율과 미탐율의 최소화가 가능할 것으로 기대된다.

웹을 기반으로 한 자기 주도적 MITS -초등 수학 수와 연산 영역 중심- (Self-Directed MITS Based on the Web -The main theme is operation of numeral in primary school mathematics -)

  • 김동혁;고병오;최의인
    • 정보교육학회논문지
    • /
    • 제8권3호
    • /
    • pp.335-349
    • /
    • 2004
  • 최근 과학기술의 급속한 발달로 인하여 컴퓨터를 활용하는 교육환경도 크게 변화하고 있다. 특히 인터넷의 빠른 성장으로 인해 웹 상의 교육정보가 기하급수적으로 증가되었으며, 이에 따라 수많은 교육용 웹 자료를 컴퓨터 보조 학습 매체로 활용하고 있다. 또한 CAI(Computer Assisted Instruction), ICAI(Intelligent CAI) 나 ITS(Intelligent Tutoring System) 등을 통해 컴퓨터를 수업 매체로 활용하는 방법도 많이 연구되고 있다. 그러나 기존의 시스템들은 다양한 수준의 학습자들에게 수준별로 적합한 학습 방법과 학습할 수 있는 방법이 효율적으로 제공되지 않고 있는 실정이다. 특히 현행 교육과정이 지향하고 있는 수준별 교육과정에 적합하지 않으면서 학생들의 능력, 적성, 필요, 흥미에 대한 개인차를 고려하지 않고 학생 개개인의 성장 잠재력과 교육의 효율성을 극대화하지 못하고 있다. 따라서 본 논문에서는 학습자에게 웹을 통하여 필요한 학습정보를 제공하고 자기 주도적으로 학습 할 수 있는 환경을 만들어주면서, 학습자의 특성, 흥미, 호기심, 능력에 따라 알맞은 학습효과를 충족시켜줄 수 있는 웹 기반 자기주도적 MITS(Multimedia ITS)를 제안하였다. 본 시스템에서는 개별 학습의 효과를 극대화하기 위해 초등 수학 전 학년 수와 연산 영역에서 과정별, 특성별, 연계별 학습내용을 체계화하여 내용과 학년을 통합하였고, 학습자가 학년, 학습시간과 장소의 제한에서 벗어날 수 있도록 4개의 모듈로 구성된 웹 기반 MITS를 설계 및 개발하였다.

  • PDF

Cascaded-Hop For DeepFake Videos Detection

  • Zhang, Dengyong;Wu, Pengjie;Li, Feng;Zhu, Wenjie;Sheng, Victor S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권5호
    • /
    • pp.1671-1686
    • /
    • 2022
  • Face manipulation tools represented by Deepfake have threatened the security of people's biological identity information. Particularly, manipulation tools with deep learning technology have brought great challenges to Deepfake detection. There are many solutions for Deepfake detection based on traditional machine learning and advanced deep learning. However, those solutions of detectors almost have problems of poor performance when evaluated on different quality datasets. In this paper, for the sake of making high-quality Deepfake datasets, we provide a preprocessing method based on the image pixel matrix feature to eliminate similar images and the residual channel attention network (RCAN) to resize the scale of images. Significantly, we also describe a Deepfake detector named Cascaded-Hop which is based on the PixelHop++ system and the successive subspace learning (SSL) model. By feeding the preprocessed datasets, Cascaded-Hop achieves a good classification result on different manipulation types and multiple quality datasets. According to the experiment on FaceForensics++ and Celeb-DF, the AUC (area under curve) results of our proposed methods are comparable to the state-of-the-art models.

e-Learning을 위한 사례 마크업 언어 기반 에이전트 시스템의 설계 및 구현 :사례 기반 학습자 모델을 중심으로 (Design and Implementation of Agent Systems based on Case Markup Language for e-Leaning)

  • 한선관;윤정섭;조근식
    • 한국전자거래학회지
    • /
    • 제6권3호
    • /
    • pp.63-80
    • /
    • 2001
  • The construction of the students knowledge in e-Learning systems, namely the student modeling, is a core component used to develop e-Learning systems. However, existing e-Learning systems have many problems to share the knowledge in a heterogeneous student model and a distributed knowledge base. Because the methods of the knowledge representation are different in each e-Learning systems, the accumulated knowledge cannot be used or shared without a great deal of difficulty. In order to share this knowledge, existing systems must reconstruct the knowledge bases. Consequently, we propose a new a Case Markup Language based on XML in order to overcome these problems. A distributed e-Learning systems fan have the advantage of easily sharing and managing the heterogeneous knowledge base proposed by CaseML. Moreover students can generate and share a case knowledge to use the communication protocol of agents. In this paper, we have designed and developed a CaseML by using a knowledge markup language. Furthermore, in order to construct an intelligent e-Learning systems, we have done our research based on the design and development of the intelligent agent system by using CaseML.

  • PDF