• Title/Summary/Keyword: Intelligent Data Mining Agent

Search Result 13, Processing Time 0.019 seconds

An Automated Negotiation System Using Intelligent Agents (지능형 에이전트를 이용한 자동협상전략 수립 시스템)

  • Park, Se-Jin;Kwon, Ick-Hyun;Shin, Hyun-Joon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.29 no.2
    • /
    • pp.20-30
    • /
    • 2006
  • Due to recent growing interest in autonomous software agents and their potential application in areas such as electronic commerce, the autonomous negotiation become more important. Evidence from both theoretical analysis and observations of human interactions suggests that if decision makers have prior information on opponents and furthermore learn the behaviors of other agents from interaction, the overall payoff would increase. We propose a new methodology for a strategy finding process using data mining in autonomous negotiation system; ANSIA(Autonomous Negotiation System using Intelligent Agent). ANSIA is a strategy based negotiation system. The framework of ANSIA consists of three component layers; 1) search agent layer, 2) data mining agent layer and 3) negotiation agent layer. ANSIA is motivated by providing a computational framework for negotiation and by defining a strategy finding model with an autonomous negotiation process.

An Intelligent Agent System using Multi-View Information Fusion (다각도 정보융합 방법을 이용한 지능형 에이전트 시스템)

  • Rhee, Hyun-Sook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.11-19
    • /
    • 2014
  • In this paper, we design an intelligent agent system with the data mining module and information fusion module as the core components of the system and investigate the possibility for the medical expert system. In the data mining module, fuzzy neural network, OFUN-NET analyzes multi-view data and produces fuzzy cluster knowledge base. In the information fusion module and application module, they serve the diagnosis result with possibility degree and useful information for diagnosis, such as uncertainty decision status or detection of asymmetry. We also present the experiment results on the BI-RADS-based feature data set selected form DDSM benchmark database. They show higher classification accuracy than conventional methods and the feasibility of the system as a computer aided diagnosis system.

The Strategy making Process For Automated Negotiation System Using Agents (에이전트를 이용한 자동화된 협상에서의 전략수립에 관한 연구)

  • Jeon, Jin;Park, Se-Jin;Kim, Sung-Sik
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.04a
    • /
    • pp.207-216
    • /
    • 2000
  • Due to recent growing interest in autonomous software agents and their potential application in areas such as electronic commerce, the autonomous negotiation become more important. Evidence from both theoretical analysis and observations of human interactions suggests that if decision makers have prior information on opponents and furthermore learn the behaviors of other agents from interaction, the overall payoff would increase. We propose a new methodology for a strategy finding process using data mining in autonomous negotiation system ; ANSIA (Autonomous Negotiation System using Intelligent Agent). ANSIA is a strategy based negotiation system. The framework of ANSIA is composed of following component layers : 1) search agent layer, 2) data mining agent layer and 3) negotiation agent layer. In the data mining agent layer, that plays a key role as a system engine, extracts strategy from the historic negotiation is extracted by competitive learning in neural network. In negotiation agent layer, we propose the autonomous negotiation process model that enables to estimate the strategy of opponent and achieve interactive settlement of negotiation. ANISIA is motivated by providing a computational framework for negotiation and by defining a strategy finding model with an autonomous negotiation process.

  • PDF

Students' Performance Prediction in Higher Education Using Multi-Agent Framework Based Distributed Data Mining Approach: A Review

  • M.Nazir;A.Noraziah;M.Rahmah
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.135-146
    • /
    • 2023
  • An effective educational program warrants the inclusion of an innovative construction which enhances the higher education efficacy in such a way that accelerates the achievement of desired results and reduces the risk of failures. Educational Decision Support System (EDSS) has currently been a hot topic in educational systems, facilitating the pupil result monitoring and evaluation to be performed during their development. Insufficient information systems encounter trouble and hurdles in making the sufficient advantage from EDSS owing to the deficit of accuracy, incorrect analysis study of the characteristic, and inadequate database. DMTs (Data Mining Techniques) provide helpful tools in finding the models or forms of data and are extremely useful in the decision-making process. Several researchers have participated in the research involving distributed data mining with multi-agent technology. The rapid growth of network technology and IT use has led to the widespread use of distributed databases. This article explains the available data mining technology and the distributed data mining system framework. Distributed Data Mining approach is utilized for this work so that a classifier capable of predicting the success of students in the economic domain can be constructed. This research also discusses the Intelligent Knowledge Base Distributed Data Mining framework to assess the performance of the students through a mid-term exam and final-term exam employing Multi-agent system-based educational mining techniques. Using single and ensemble-based classifiers, this study intends to investigate the factors that influence student performance in higher education and construct a classification model that can predict academic achievement. We also discussed the importance of multi-agent systems and comparative machine learning approaches in EDSS development.

Intelligent Distributed Platform using Mobile Agent based on Dynamic Group Binding (동적 그룹 바인딩 기반의 모바일 에이전트를 이용한 인텔리전트 분산 플랫폼)

  • Mateo, Romeo Mark A.;Lee, Jae-Wan
    • Journal of Internet Computing and Services
    • /
    • v.8 no.3
    • /
    • pp.131-143
    • /
    • 2007
  • The current trends in information technology and intelligent systems use data mining techniques to discover patterns and extract rules from distributed databases. In distributed environment, the extracted rules from data mining techniques can be used in dynamic replications, adaptive load balancing and other schemes. However, transmission of large data through the system can cause errors and unreliable results. This paper proposes the intelligent distributed platform based on dynamic group binding using mobile agents which addresses the use of intelligence in distributed environment. The proposed grouping service implements classification scheme of objects. Data compressor agent and data miner agent extracts rules and compresses data, respectively, from the service node databases. The proposed algorithm performs preprocessing where it merges the less frequent dataset using neuro-fuzzy classifier before sending the data. Object group classification, data mining the service node database, data compression method, and rule extraction were simulated. Result of experiments in efficient data compression and reliable rule extraction shows that the proposed algorithm has better performance compared to other methods.

  • PDF

Intelligent Data Mining Agent for Automatic Clustering (자동 군집화를 위한 지능화된 데이터 마이닝 에이전트)

  • 박정은;전성해;오경환
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.370-376
    • /
    • 2002
  • 인터넷 환경에서 발생되는 수많은 데이터를 지능적으로 처리할 수 있는 자동화된 분석 시스템의 필요성이 제기된다. 이러한 시스템의 데이터 분석은 크게 지도 학습과 자율 학습으로 나된다. 본 논문에서는 특히 자율학습 군집화에 대한 자동화된 시스템으로서 지능화된 데이터 마이닝 에이전트를 제안한다. 군집화 과정에서는 데이터를 분석하는 분석가가 군집화의 방법과 결과 해석에 실시간으로 관여하기 어렵기 때문에 이러한 작업을 담당하는 지능화된 에이전트가 자동화된 군집화를 담당하면 효과적인 군집화 전략이 될 수 있다. 본 논문의 자동 군집화를 위한 지능화된 데이터 마이닝 에이전트 시스템은 군집화 수행 에이전트와 군집화 성능 평가 에이전트로 구성된 다중 에이전트로서 두 개의 에이전트가 서로 정보를 교환하면서 최적의 군집화를 수행한다. UCI Machine Repository 데이터를 이용한 실험을 통해 제안 시스템의 성능 평가를 수행하였다.

  • PDF

A personalized recommendation methodology using web usage mining and decision tree induction (웹 마이닝과 의사결정나무 기법을 활용한 개인별 상품추천 방법)

  • 조윤호;김재경
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.05a
    • /
    • pp.342-351
    • /
    • 2002
  • A personalized product recommendation is an enabling mechanism to overcome information overload occurred when shopping in an Internet marketplace. Collaborative filtering has been known to be one of the most successful recommendation methods, but its application to e-commerce has exposed well-known limitations such as sparsity and scalability, which would lead to poor recommendations. This paper suggests a personalized recommendation methodology by which we are able to get further effectiveness and quality of recommendations when applied to an Internet shopping mall. The suggested methodology is based on a variety of data mining techniques such as web usage mining, decision tree induction, association rule mining and the product taxonomy. For the evaluation of the methodology, we implement a recommender system using intelligent agent and data warehousing technologies.

  • PDF

DSS Architectures to Support Data Mining Activities for Supply Chain Management (데이터 마이닝을 활용한 공급사슬관리 의사결정지원시스템의 구조에 관한 연구)

  • Jhee, Won-Chul;Suh, Min-Soo
    • Asia pacific journal of information systems
    • /
    • v.8 no.3
    • /
    • pp.51-73
    • /
    • 1998
  • This paper is to evaluate the application potentials of data mining in the areas of Supply Chain Management (SCM) and to suggest the architectures of Decision Support Systems (DSS) that support data mining activities. We first briefly introduce data mining and review the recent literatures on SCM and then evaluate data mining applications to SCM in three aspects: marketing, operations management and information systems. By analyzing the cases about pricing models in distribution channels, demand forecasting and quality control, it is shown that artificial intelligence techniques such as artificial neural networks, case-based reasoning and expert systems, combined with traditional analysis models, effectively mine the useful knowledge from the large volume of SCM data. Agent-based information system is addressed as an important architecture that enables the pursuit of global optimization of SCM through communication and information sharing among supply chain constituents without loss of their characteristics and independence. We expect that the suggested architectures of intelligent DSS provide the basis in developing information systems for SCM to improve the quality of organizational decisions.

  • PDF

인터넷 상점에서의 동적인 고객 분석에 따른 마케팅 전략

  • 하성호;이재신
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.277-286
    • /
    • 2002
  • 전통적인 고객관계관리 연구는 특정 시점에서 고객관계관리에 중점을 두어 연구되었다. 정적인 고객관계관리와 고객 행동에 관한 지식은 마케팅 관리자가 제한된 마케팅 자원을 이익의 극대화를 위해 사용할 수 있게 해주었다. 그러나 시간이 경과하게 되면 이러한 정적인 지식은 쓸모가 없어지게 된다. 그러므로 고객관계관리는 고객의 동적 특성을 반영해야 한다. 과거 고객의 구매 행위를 관찰하여 현재 또는 미래 시장의 고객을 세분화하여 구분된 고객 군집에 대해 서로 다른 마케팅 전략을 사용할 수 있다. 고객의 구매행동을 근간으로 한 고객관계관리는 수십 년 전부터 연구되어왔지만 동적인 고객관계관리에 대한 연구는 최근에 들어 활발하게 진행되고 있다. 본 논문은 인터넷 상점의 고객 데이터로부터 추출된 지식과 시간 경과에 따른 고객 행동 패턴의 분석을 위해 데이터마이닝과 모니터링 에이전트 시스템(MAS)을 이용하며, 이를 통해 동적인 고객관계관리 모델을 제시한다. 이 모델은 고객 이력 경로에 대한 예측과 고객에게 나타나는 집단 이력경로의, 분석, 그리고 시간 경과에 따른 고객 군집의 변화에 대한 분석, 그에 따른 마케팅 전략 도출을 포함한다. 이 모델의 제안은 많은 온라인 소매상이 직면할 수 있는 경영상의 문제를 해결하는데 유용할 것이다.

  • PDF

A Design of Goods Recommendation System based on Multi-crossselling (다중크로스셀링 기반의 개인 상품 추천 시스템의 설계)

  • Yun Jong-Chan;Kim Jong-Jin;Youn Sung-Dae
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.9
    • /
    • pp.1095-1106
    • /
    • 2006
  • Recently, many effort is demanded for appropriate operation and management of the Electronic commerce system. Electronic commerce system must provide information satisfying customers. To do this, many kinds of studies are being advanced about electronic commerce system using intelligent agent technology. In this paper, We propose a support system for goods based on Case-Based Reasoning(CBR) and multi-crossselling technology. The system can supply the information of goods that is suitable about customer need under specification condition with CBR technique and can search several goods approximate to customer pattern using Multi-crossselling technique.

  • PDF