Due to recent growing interest in autonomous software agents and their potential application in areas such as electronic commerce, the autonomous negotiation become more important. Evidence from both theoretical analysis and observations of human interactions suggests that if decision makers have prior information on opponents and furthermore learn the behaviors of other agents from interaction, the overall payoff would increase. We propose a new methodology for a strategy finding process using data mining in autonomous negotiation system; ANSIA(Autonomous Negotiation System using Intelligent Agent). ANSIA is a strategy based negotiation system. The framework of ANSIA consists of three component layers; 1) search agent layer, 2) data mining agent layer and 3) negotiation agent layer. ANSIA is motivated by providing a computational framework for negotiation and by defining a strategy finding model with an autonomous negotiation process.
본 논문에서는 데이터마이닝모듈과 정보융합모듈을 핵심구성요소로 가지는 지능형에이전트 시스템을 설계하고 다각도 정보를 융합하여 진단전문가시스템으로 활용할 수 있는 가능성을 제시한다. 데이터마이닝모듈에서는 퍼지신경망 OFUN-NET에 의하여 다각도의 데이터를 분석하고 퍼지 클러스터 정보를 지식베이스로 구축한다. 정보융합모듈과 응용모듈에서는 가능성정도로 제공되는 진단결과와 불확실 결정상태나 비대칭의 발견과 같은 전문가의 진단에 유용한 정보를 제공해 주고 있다. 또한 DDSM 벤치마크 데이터베이스로부터 획득한 디지털 유방 x선 영상의 BI-RADS 기반 특징데이터를 가지고 실험한 결과는 기존의 방법보다 높은 분류 정확도를 보여주면서 컴퓨터보조진단시스템으로서의 가능성을 보여주고 있다.
한국지능정보시스템학회 2000년도 춘계정기학술대회 e-Business를 위한 지능형 정보기술 / 한국지능정보시스템학회
/
pp.207-216
/
2000
Due to recent growing interest in autonomous software agents and their potential application in areas such as electronic commerce, the autonomous negotiation become more important. Evidence from both theoretical analysis and observations of human interactions suggests that if decision makers have prior information on opponents and furthermore learn the behaviors of other agents from interaction, the overall payoff would increase. We propose a new methodology for a strategy finding process using data mining in autonomous negotiation system ; ANSIA (Autonomous Negotiation System using Intelligent Agent). ANSIA is a strategy based negotiation system. The framework of ANSIA is composed of following component layers : 1) search agent layer, 2) data mining agent layer and 3) negotiation agent layer. In the data mining agent layer, that plays a key role as a system engine, extracts strategy from the historic negotiation is extracted by competitive learning in neural network. In negotiation agent layer, we propose the autonomous negotiation process model that enables to estimate the strategy of opponent and achieve interactive settlement of negotiation. ANISIA is motivated by providing a computational framework for negotiation and by defining a strategy finding model with an autonomous negotiation process.
International Journal of Computer Science & Network Security
/
제23권10호
/
pp.135-146
/
2023
An effective educational program warrants the inclusion of an innovative construction which enhances the higher education efficacy in such a way that accelerates the achievement of desired results and reduces the risk of failures. Educational Decision Support System (EDSS) has currently been a hot topic in educational systems, facilitating the pupil result monitoring and evaluation to be performed during their development. Insufficient information systems encounter trouble and hurdles in making the sufficient advantage from EDSS owing to the deficit of accuracy, incorrect analysis study of the characteristic, and inadequate database. DMTs (Data Mining Techniques) provide helpful tools in finding the models or forms of data and are extremely useful in the decision-making process. Several researchers have participated in the research involving distributed data mining with multi-agent technology. The rapid growth of network technology and IT use has led to the widespread use of distributed databases. This article explains the available data mining technology and the distributed data mining system framework. Distributed Data Mining approach is utilized for this work so that a classifier capable of predicting the success of students in the economic domain can be constructed. This research also discusses the Intelligent Knowledge Base Distributed Data Mining framework to assess the performance of the students through a mid-term exam and final-term exam employing Multi-agent system-based educational mining techniques. Using single and ensemble-based classifiers, this study intends to investigate the factors that influence student performance in higher education and construct a classification model that can predict academic achievement. We also discussed the importance of multi-agent systems and comparative machine learning approaches in EDSS development.
오늘날 정보 기술 및 지능형 시스템에서는 분산 데이터베이스로부터 패턴들을 찾고 규칙들을 추출하기 위해 데이터 마이닝 기술을 사용한다. 분산환경에서 데이터 마이닝 기술을 이용해 추출된 규칙들은 동적인 중복, 적응형 부하 균형 및 기타 기술들에서 활용될 수 있다. 그러나 대량의 데이터 전송은 에러를 야기하며 신뢰할 수 없는 결과를 초래할 수 있다. 이 논문은 이동 에이전트를 사용하여 동적 그룹 바인딩을 기반으로 한 인텔리전트 분산 플랫폼을 제안한다. 그룹서비스를 통해 효율적인 객체 검색을 위한 분류 알고리즘을 구현한다. 지능형 모델은 동적 중복을 위해 추출된 규칙을 사용한다. 데이터 마이닝 에이전트와 데이터 압축 에이전트는 각각 서비스 노드 데이터베이스로부터 규칙을 추출하여 데이터를 압축한다. 제안한 알고리즘은 데이터를 전송하기 전에 neuro-fuzzy 분류기를 사용하여 빈도가 적은 데이터 ???V을 합하는 전처리 과정을 수행한다. 객체그룹 분류, 서비스 노드 데이터베이스 마이닝, 데이터 압축 및 규칙 추출에 대한 시뮬레이션을 수행했다. 효율적인 데이터 압축 및 신뢰성 있는 규칙 추출에 대한 실험 결과 제안한 알고리즘이 다른 방법들과 비교해 이러한 관점에서 성능이 우수함을 나타내었다.
인터넷 환경에서 발생되는 수많은 데이터를 지능적으로 처리할 수 있는 자동화된 분석 시스템의 필요성이 제기된다. 이러한 시스템의 데이터 분석은 크게 지도 학습과 자율 학습으로 나된다. 본 논문에서는 특히 자율학습 군집화에 대한 자동화된 시스템으로서 지능화된 데이터 마이닝 에이전트를 제안한다. 군집화 과정에서는 데이터를 분석하는 분석가가 군집화의 방법과 결과 해석에 실시간으로 관여하기 어렵기 때문에 이러한 작업을 담당하는 지능화된 에이전트가 자동화된 군집화를 담당하면 효과적인 군집화 전략이 될 수 있다. 본 논문의 자동 군집화를 위한 지능화된 데이터 마이닝 에이전트 시스템은 군집화 수행 에이전트와 군집화 성능 평가 에이전트로 구성된 다중 에이전트로서 두 개의 에이전트가 서로 정보를 교환하면서 최적의 군집화를 수행한다. UCI Machine Repository 데이터를 이용한 실험을 통해 제안 시스템의 성능 평가를 수행하였다.
A personalized product recommendation is an enabling mechanism to overcome information overload occurred when shopping in an Internet marketplace. Collaborative filtering has been known to be one of the most successful recommendation methods, but its application to e-commerce has exposed well-known limitations such as sparsity and scalability, which would lead to poor recommendations. This paper suggests a personalized recommendation methodology by which we are able to get further effectiveness and quality of recommendations when applied to an Internet shopping mall. The suggested methodology is based on a variety of data mining techniques such as web usage mining, decision tree induction, association rule mining and the product taxonomy. For the evaluation of the methodology, we implement a recommender system using intelligent agent and data warehousing technologies.
This paper is to evaluate the application potentials of data mining in the areas of Supply Chain Management (SCM) and to suggest the architectures of Decision Support Systems (DSS) that support data mining activities. We first briefly introduce data mining and review the recent literatures on SCM and then evaluate data mining applications to SCM in three aspects: marketing, operations management and information systems. By analyzing the cases about pricing models in distribution channels, demand forecasting and quality control, it is shown that artificial intelligence techniques such as artificial neural networks, case-based reasoning and expert systems, combined with traditional analysis models, effectively mine the useful knowledge from the large volume of SCM data. Agent-based information system is addressed as an important architecture that enables the pursuit of global optimization of SCM through communication and information sharing among supply chain constituents without loss of their characteristics and independence. We expect that the suggested architectures of intelligent DSS provide the basis in developing information systems for SCM to improve the quality of organizational decisions.
전통적인 고객관계관리 연구는 특정 시점에서 고객관계관리에 중점을 두어 연구되었다. 정적인 고객관계관리와 고객 행동에 관한 지식은 마케팅 관리자가 제한된 마케팅 자원을 이익의 극대화를 위해 사용할 수 있게 해주었다. 그러나 시간이 경과하게 되면 이러한 정적인 지식은 쓸모가 없어지게 된다. 그러므로 고객관계관리는 고객의 동적 특성을 반영해야 한다. 과거 고객의 구매 행위를 관찰하여 현재 또는 미래 시장의 고객을 세분화하여 구분된 고객 군집에 대해 서로 다른 마케팅 전략을 사용할 수 있다. 고객의 구매행동을 근간으로 한 고객관계관리는 수십 년 전부터 연구되어왔지만 동적인 고객관계관리에 대한 연구는 최근에 들어 활발하게 진행되고 있다. 본 논문은 인터넷 상점의 고객 데이터로부터 추출된 지식과 시간 경과에 따른 고객 행동 패턴의 분석을 위해 데이터마이닝과 모니터링 에이전트 시스템(MAS)을 이용하며, 이를 통해 동적인 고객관계관리 모델을 제시한다. 이 모델은 고객 이력 경로에 대한 예측과 고객에게 나타나는 집단 이력경로의, 분석, 그리고 시간 경과에 따른 고객 군집의 변화에 대한 분석, 그에 따른 마케팅 전략 도출을 포함한다. 이 모델의 제안은 많은 온라인 소매상이 직면할 수 있는 경영상의 문제를 해결하는데 유용할 것이다.
전자상거래시스템의 효율적인 운영과 관리를 위해서 더욱 많은 노력이 요구되고 있으며 고객의 요구에 대해서 가장 적절한 상품 정보를 제공함으로서 만족을 극대화할 수 있어야 한다. 이를 위해서 많은 지능형 에이전트기술을 사용한 전자상거래시스템이 도입되고 있다. 본 논문에서는 전자상거래시스템에서 개인 상품 추천 지원을 위한 사례기반추론기법과 다중크로스 셀링기법(Multi-Crossselling)을 기반으로 한 상품 추천시스템을 제안하였다. 제안한 시스템은 다중크로스셀링 기법을 통해 고객패턴의 유사값에 가까운 여러 상품을 추출하고 사례기반추론기법을 통해 특정 조건에서 고객의 요구에 대해 적절한 상품 정보를 제공하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.