• Title/Summary/Keyword: Intelligent Data Analysis

Search Result 1,456, Processing Time 0.029 seconds

Design of Data-centroid Radial Basis Function Neural Network with Extended Polynomial Type and Its Optimization (데이터 중심 다항식 확장형 RBF 신경회로망의 설계 및 최적화)

  • Oh, Sung-Kwun;Kim, Young-Hoon;Park, Ho-Sung;Kim, Jeong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.639-647
    • /
    • 2011
  • In this paper, we introduce a design methodology of data-centroid Radial Basis Function neural networks with extended polynomial function. The two underlying design mechanisms of such networks involve K-means clustering method and Particle Swarm Optimization(PSO). The proposed algorithm is based on K-means clustering method for efficient processing of data and the optimization of model was carried out using PSO. In this paper, as the connection weight of RBF neural networks, we are able to use four types of polynomials such as simplified, linear, quadratic, and modified quadratic. Using K-means clustering, the center values of Gaussian function as activation function are selected. And the PSO-based RBF neural networks results in a structurally optimized structure and comes with a higher level of flexibility than the one encountered in the conventional RBF neural networks. The PSO-based design procedure being applied at each node of RBF neural networks leads to the selection of preferred parameters with specific local characteristics (such as the number of input variables, a specific set of input variables, and the distribution constant value in activation function) available within the RBF neural networks. To evaluate the performance of the proposed data-centroid RBF neural network with extended polynomial function, the model is experimented with using the nonlinear process data(2-Dimensional synthetic data and Mackey-Glass time series process data) and the Machine Learning dataset(NOx emission process data in gas turbine plant, Automobile Miles per Gallon(MPG) data, and Boston housing data). For the characteristic analysis of the given entire dataset with non-linearity as well as the efficient construction and evaluation of the dynamic network model, the partition of the given entire dataset distinguishes between two cases of Division I(training dataset and testing dataset) and Division II(training dataset, validation dataset, and testing dataset). A comparative analysis shows that the proposed RBF neural networks produces model with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.

The Behavior Analysis of Exhibition Visitors using Data Mining Technique at the KIDS & EDU EXPO for Children (유아교육 박람회에서 데이터마이닝 기법을 이용한 전시 관람 행동 패턴 분석)

  • Jung, Min-Kyu;Kim, Hyea-Kyeong;Choi, Il-Young;Lee, Kyoung-Jun;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.2
    • /
    • pp.77-96
    • /
    • 2011
  • An exhibition is defined as market events for specific duration to present exhibitors' main products to business or private visitors, and it plays a key role as effective marketing channels. As the importance of exhibition is getting more and more, domestic exhibition industry has achieved such a great quantitative growth. But, In contrast to the quantitative growth of domestic exhibition industry, the qualitative growth of Exhibition has not achieved competent growth. In order to improve the quality of exhibition, we need to understand the preference or behavior characteristics of visitors and to increase the level of visitors' attention and satisfaction through the understanding of visitors. So, in this paper, we used the observation survey method which is a kind of field research to understand visitors and collect the real data for the analysis of behavior pattern. And this research proposed the following methodology framework consisting of three steps. First step is to select a suitable exhibition to apply for our method. Second step is to implement the observation survey method. And we collect the real data for further analysis. In this paper, we conducted the observation survey method to obtain the real data of the KIDS & EDU EXPO for Children in SETEC. Our methodology was conducted on 160 visitors and 78 booths from November 4th to 6th in 2010. And, the last step is to analyze the record data through observation. In this step, we analyze the feature of exhibition using Demographic Characteristics collected by observation survey method at first. And then we analyze the individual booth features by the records of visited booth. Through the analysis of individual booth features, we can figure out what kind of events attract the attention of visitors and what kind of marketing activities affect the behavior pattern of visitors. But, since previous research considered only individual features influenced by exhibition, the research about the correlation among features is not performed much. So, in this research, additional analysis is carried out to supplement the existing research with data mining techniques. And we analyze the relation among booths using data mining techniques to know behavior patterns of visitors. Among data mining techniques, we make use of two data mining techniques, such as clustering analysis and ARM(Association Rule Mining) analysis. In clustering analysis, we use K-means algorithm to figure out the correlation among booths. Through data mining techniques, we figure out that there are two important features to affect visitors' behavior patterns in exhibition. One is the geographical features of booths. The other is the exhibit contents of booths. Those features are considered when the organizer of exhibition plans next exhibition. Therefore, the results of our analysis are expected to provide guideline to understanding visitors and some valuable insights for the exhibition from the earlier phases of exhibition planning. Also, this research would be a good way to increase the quality of visitor satisfaction. Visitors' movement paths, booth location, and distances between each booth are considered to plan next exhibition in advance. This research was conducted at the KIDS & EDU EXPO for Children in SETEC(Seoul Trade Exhibition & Convention), but it has some constraints to be applied directly to other exhibitions. Also, the results were derived from a limited number of data samples. In order to obtain more accurate and reliable results, it is necessary to conduct more experiments based on larger data samples and exhibitions on a variety of genres.

Text Mining-Based Emerging Trend Analysis for the Aviation Industry (항공산업 미래유망분야 선정을 위한 텍스트 마이닝 기반의 트렌드 분석)

  • Kim, Hyun-Jung;Jo, Nam-Ok;Shin, Kyung-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.65-82
    • /
    • 2015
  • Recently, there has been a surge of interest in finding core issues and analyzing emerging trends for the future. This represents efforts to devise national strategies and policies based on the selection of promising areas that can create economic and social added value. The existing studies, including those dedicated to the discovery of future promising fields, have mostly been dependent on qualitative research methods such as literature review and expert judgement. Deriving results from large amounts of information under this approach is both costly and time consuming. Efforts have been made to make up for the weaknesses of the conventional qualitative analysis approach designed to select key promising areas through discovery of future core issues and emerging trend analysis in various areas of academic research. There needs to be a paradigm shift in toward implementing qualitative research methods along with quantitative research methods like text mining in a mutually complementary manner. The change is to ensure objective and practical emerging trend analysis results based on large amounts of data. However, even such studies have had shortcoming related to their dependence on simple keywords for analysis, which makes it difficult to derive meaning from data. Besides, no study has been carried out so far to develop core issues and analyze emerging trends in special domains like the aviation industry. The change used to implement recent studies is being witnessed in various areas such as the steel industry, the information and communications technology industry, the construction industry in architectural engineering and so on. This study focused on retrieving aviation-related core issues and emerging trends from overall research papers pertaining to aviation through text mining, which is one of the big data analysis techniques. In this manner, the promising future areas for the air transport industry are selected based on objective data from aviation-related research papers. In order to compensate for the difficulties in grasping the meaning of single words in emerging trend analysis at keyword levels, this study will adopt topic analysis, which is a technique used to find out general themes latent in text document sets. The analysis will lead to the extraction of topics, which represent keyword sets, thereby discovering core issues and conducting emerging trend analysis. Based on the issues, it identified aviation-related research trends and selected the promising areas for the future. Research on core issue retrieval and emerging trend analysis for the aviation industry based on big data analysis is still in its incipient stages. So, the analysis targets for this study are restricted to data from aviation-related research papers. However, it has significance in that it prepared a quantitative analysis model for continuously monitoring the derived core issues and presenting directions regarding the areas with good prospects for the future. In the future, the scope is slated to expand to cover relevant domestic or international news articles and bidding information as well, thus increasing the reliability of analysis results. On the basis of the topic analysis results, core issues for the aviation industry will be determined. Then, emerging trend analysis for the issues will be implemented by year in order to identify the changes they undergo in time series. Through these procedures, this study aims to prepare a system for developing key promising areas for the future aviation industry as well as for ensuring rapid response. Additionally, the promising areas selected based on the aforementioned results and the analysis of pertinent policy research reports will be compared with the areas in which the actual government investments are made. The results from this comparative analysis are expected to make useful reference materials for future policy development and budget establishment.

External Noise Analysis Algorithm based on FCM Clustering for Nonlinear Maneuvering Target (FCM 클러스터링 기반 비선형 기동표적의 외란분석 알고리즘)

  • Son, Hyun-Seung;Park, Jin-Bae;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2346-2351
    • /
    • 2011
  • This paper presents the intelligent external noise analysis method for nonlinear maneuvering target. After recognizing maneuvering pattern of the target by the proposed method, we track the state of the target. The external noise can be divided into mere noise and acceleration using only the measurement. divided noise passes through the filtering step and acceleration is punched into dynamic model to compensate expected states. The acceleration is the most deterministic factor to the maneuvering. By dividing, approximating, and compensating the acceleration, we can reduce the tracking error effectively. We use the fuzzy c-means (FCM) clustering as the method to divide external noise. FCM can separate the acceleration from the noise without criteria. It makes the criteria with the data made by measurement at every sampling time. So it can show the adaptive tracking result. The proposed method proceeds the tracking target simultaneously with the learning process. Thus it can apply to the online system. The proposed method shows the remarkable tracking result on the linear and nonlinear maneuvering. Finally, some examples are provided to show the feasibility of the proposed algorithm.

Optimal Buffer Allocation in Multi-Product Repairable Production Lines Based on Multi-State Reliability and Structural Complexity

  • Duan, Jianguo;Xie, Nan;Li, Lianhui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1579-1602
    • /
    • 2020
  • In the design of production system, buffer capacity allocation is a major step. Through polymorphism analysis of production capacity and production capability, this paper investigates a buffer allocation optimization problem aiming at the multi-stage production line including unreliable machines, which is concerned with maximizing the system theoretical production rate and minimizing the system state entropy for a certain amount of buffers simultaneously. Stochastic process analysis is employed to establish Markov models for repairable modular machines. Considering the complex structure, an improved vector UGF (Universal Generating Function) technique and composition operators are introduced to construct the system model. Then the measures to assess the system's multi-state reliability and structural complexity are given. Based on system theoretical production rate and system state entropy, mathematical model for buffer capacity optimization is built and optimized by a specific genetic algorithm. The feasibility and effectiveness of the proposed method is verified by an application of an engine head production line.

Dynamic response and design of a skirted strip foundation subjected to vertical vibration

  • Alzabeebee, Saif
    • Geomechanics and Engineering
    • /
    • v.20 no.4
    • /
    • pp.345-358
    • /
    • 2020
  • Numerous studies have repeatedly demonstrated the efficiency of using skirts to increase the bearing capacity and to reduce settlement of shallow foundations subjected to static loads. However, no efforts have been made to study the efficiency of using these skirts to reduce settlement produced by machine vibration, although machines are very sensitive to settlement and the foundations of these machines should be designed properly to ensure that the settlement produced due to machine vibration is very small. This research has been conducted to investigate the efficiency of using skirts as a technique to reduce the settlement of a strip foundation subjected to machine vibration. A two-dimensional finite element model has been developed, validated, and employed to achieve the aim of the study. The results of the analyses showed that the use of skirts reduces the settlement produced due to machine vibration. However, the percentage decrease of the settlement is remarkably influenced by the density of the soil and the frequency of vibration, where it rises as the frequency of vibration increases and declines as the soil density rises. It was also found that increasing skirt length increases the percentage decrease of the settlement. Importantly, the results obtained from the analyses have been utilized to derive new dynamic impedance values that implicitly consider the presence of skirts. Finally, novel design equations of dynamic impedance that implicitly account to the effect of the skirts have been derived and validated utilizing a new intelligent data driven method. These new equations can be used in future designs of skirted strip foundations subjected to machine vibration.

A Study on the Korea Weather Environment for Icing Airworthiness of Military Helicopter (군용헬기 결빙 감항인증을 위한 국내 기상환경에 관한 연구)

  • Hur, Jangwook;Shin, Baekcheon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.304-310
    • /
    • 2014
  • Based on atmosphere weather data by balloon in Osan and Gwangju area, if icing condition occurs in weather environment of altitude range where helicopter is operated was analyzed in quantitative way. Yearly icing occurrence frequency for daytime during recent three years was average 102 days in Osan, average 91 days in Gwangju. Icing weather environment to highly affect operation of helicopter varies a little according to analysis methods but icing intensity at MDT level was calculated in all the methods, and 14.5~38 times was suggested in Osan; 2.5~30 times in Gwangju. Icing at MDT level was calculated in common in all the analysis methods through wide periods such as Jan., Feb., Mar., and Nov. in Osan. In Gwangju, icing at MDT level was suggested focusing on Jan. only. Therefore, military helicopter developed in Korea is required to strive obtaining certificate of airworthiness about icing condition at MDT level for implementation of perfect operational mission and safe operation.

Design and Implementation of a Real-time Integrated Analysis Framework based on Multiprocessor Search Modules against Malicious Codes (악성코드 대응 MPSM기반 실시간통합분석체계의 설계 및 구현)

  • Moon, Yoon Jong
    • Convergence Security Journal
    • /
    • v.15 no.1
    • /
    • pp.69-82
    • /
    • 2015
  • This dissertation introduce how to react against the cybercrime and analysis of malware detection. Also this dissertation emphasize the importance about efficient control of correspond process for the information security. Cybercrime and cyber breach are becoming increasingly intelligent and sophisticated. To correspond those crimes, the strategy of defense need change soft kill to hard kill. So this dissertation includes the study of weak point about OS, Application system. Also this dissertation suggest that API structure for handling and analyzing big data forensic.

Analysis on the Media Content Research Trends in Media Convergence Era Based on Intellectual Information Technology (지능정보기술 기반 미디어 컨버전스 시대의 콘텐츠 연구경향 분석)

  • Jeon, Gyongran;Kim, Young-Chul
    • Journal of Korea Game Society
    • /
    • v.20 no.2
    • /
    • pp.113-122
    • /
    • 2020
  • This study is the research tendency(2016~2019) on the content and the intelligent information technology. After the IIT emerged as a social topic, related research increased, and interest in VR and AR was the highest. In games, more research has been done on VR and AR. In the case of big data technology, it was a tendency to pay attention to the study of movie contents. Many studies have attempted a technological approach to IIT. With regard to artificial intelligence technology, there were differences by technology and content area, mainly viewed from a legal and institutional perspective.

Trends in Dynamic Crime Prediction Technologies based on Intelligent CCTV (지능형 CCTV 기반 동적 범죄예측 기술 동향)

  • Park, Sangwook;Oh, Seon Ho;Park, Su Wan;Lim, Kyung Soo;Choi, Bum Suk;Park, So Hee;Ghyme, Sang Won;Han, Seung Wan;Han, Jong-Wook;Kim, Geonwoo
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.2
    • /
    • pp.17-27
    • /
    • 2020
  • Predicting where and when a crime may occur in an area of interest is one of many strategies of predictive policing. Multidimensional analysis, including CCTV, can overcome the limitations of hotspot prediction, especially of violent crimes. In order to identify the precursors of a crime, it is necessary to analyze dynamic data such as attributes and activities of people, social information, environmental information, traffic flows, and weather. These parameters can be recognized by CCTV. In addition, it provides accurate analysis of the circumstances of a crime in a dynamic situation, calculates the risk, and predicts the probability of a crime occurring in the near future. Additionally, it provides ways to gather historical criminal datasets, including sensitive personal information.