• Title/Summary/Keyword: Intelligent Data Analysis

Search Result 1,456, Processing Time 0.038 seconds

A Study to Provide Real-Time Freeway Precipitation Information Using C-ITS Based PVD (C-ITS 기반 PVD를 활용한 실시간 고속도로 강수정보 수집에 관한 연구)

  • Kim, Ho seon;Kim, Seoung bum
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.133-146
    • /
    • 2021
  • Providing weather information on roads today means that the road weather conditions near weather observation points are presented to road managers and road users. These weather observation points are managed by the Korea Meteorological Administration. However, it is difficult to provide accurate weather information due to physical limitations such as the presence of precipitation collection points, distance to weather information provision roads, and the presence of mountains. Therefore, this study intends to perform a comparative analysis by time zone and administrative dong provided by the Meteorological Administration using the wiper information among the information contained in the PVD(Probe Vehicle Data) collected from the highway C-ITS project. As a result of the analysis it was possible to detect rainfall even in the event of local rainfall and rainfall over a long period of time and the higher the cumulative precipitation per hour, the higher the probability of coincidence. This study is meaningful because it used PVD to solve the limitations of the existing road weather information provision method and suggested utilization plan for PVD.

Biological Signal Measurement, Archiving, and Communication System (SiMACS) (생체신호 측정 및 종합관리 시스템 (SiMACS))

  • Woo, Eung-Je;Park, Seung-Hun
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.05
    • /
    • pp.49-52
    • /
    • 1994
  • We have developed a biological signal measurement, archiving, and communication system (SiMACS). The front end of the system is the intelligent data processing unit (IDPU) which includes ECG, EEG, EMG, blood pressure, respiration, temperature measurement modules, module control and data acquisition unit, real-time display and signal processing unit. IDPUS are connected to central data base unit through LAN(Ethernet). Workstations which receive signals from central DB and provide various signal analysis tools are also connected to the network. The developed PC-based SiMACS is described.

  • PDF

Application of Standard Terminologies for the Development of a Customized Healthcare Service based on a PHR Platform

  • Jung, Hyun Jung;Park, Hyun Sang;Kim, Hyun Young;Kim, Hwa Sun
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.303-308
    • /
    • 2019
  • The personal health record platform can store and manage medical records, health-monitoring data such as blood pressure and blood sugar, and life logs generated from various wearable devices. It provides services such as international standard-based medical document management, data pattern analysis and an intelligent inference engine, and disease prediction and domain contents. This study aims to construct a foundation for the transmission of international standard-based medical documents by mapping the diagnosis items of a general health examination, special health examination, life logs, health data, and life habits with the international standard terminology systems. The results of mapping with international standard terminology systems show a high mapping rate of 95.6%, with 78.8% for LOINC, 10.3% for SNOMED, and 6.5% when mapped with both LOINC and SNOMED.

Development of Intelligent Polysomnographic Diagnosis System (지능형 수면다원 진단 시스템 개발)

  • Park, K.S.;Han, J.M.;Park, H.J.;Jeong, D.U.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.199-202
    • /
    • 1997
  • We are developing computer integrated polysomnography system. This system integrates conventional polysomnography with computer for data management, automatic analysis, scoring, and data transmission. In the first stage, we have developed the signal interface and user interface for the manual scoring and data management. For the automatic scoring of sleep stage, we have developed the protocol and have applied the analytic method in its primitive form. In the second stage we will develope a partially automatic scoring system, and finalize the fully automatic system in the final third stage.

  • PDF

A study for PDMS Application Scheme of Digital S/S with IEC61850 Base (IEC61850 기반 디지털 변전시스팀에서의 PDMS 적용 방안에 관한 연구)

  • Lee, D.C.;Kim, H.S.;Bae, U.L.;Min, B.W.
    • Proceedings of the KIEE Conference
    • /
    • 2006.05a
    • /
    • pp.78-82
    • /
    • 2006
  • The Partial Discharge Monitoring System is technology which is available to measure & analysis the partial discharge of Power equipment. This technology is in the limelight as a pre-forecast system of equipment defect but there are some problems like no protocol standard, layered network management and the limitation of physical size. This paper presents whole system structure includes engineering centers, LN(Logical Node) to apply PDMS for, base-digital substation system, ICE61850 compatible Condition Monitoring &Diagnosis (CMD), Local Unit(LU), Intelligent Electronic Device (IED) for the solution scheme of these limitations.

  • PDF

A Post-analysis of the Association Rule Mining Applied to Internee Shopping Mall

  • Kim, Jae-Kyeong;Song, Hee-Seok
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.06a
    • /
    • pp.253-260
    • /
    • 2001
  • Understanding and adapting to changes of customer behavior is an important aspect for a company to survive in continuously changing environment. The aim of this paper is to develop a methodology which detects changes of customer behavior automatically from customer profiles and sales data at different time snapshots. For this purpose, we first define three types of changes as emerging pattern, unexpected change and the added / perished rule. Then we develop similarity and difference measures for rule matching to detect all types of change. Finally, the degree of change is evaluated to detect significantly changed rules. Our proposed methodology can evaluate degree of changes as well as detect all kinds of change automatically from different time snapshot data. A case study for evaluation and practical business implications for this methodology are also provided.

  • PDF

Smart Factory Activation Plan through Analysis of Smart Factory Promotion Status and Introduction Plan Data

  • Seong-Hoon Lee
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.229-234
    • /
    • 2024
  • A smart factory is defined as a cutting-edge, intelligent factory that integrates all production processes from product planning to sales with information and communication technology. Through these factories, each company produces customized products with minimal cost and time. The smart factory promotion project in Korea has produced positive results even in difficult environments such as the COVID-19 situation. Through the transition to a smart manufacturing production system, the competitiveness of small and medium-sized businesses has been greatly strengthened, including increased productivity and reduced costs. This study was based on surveyed data conducted by organizations related to smart factory promotion in 2020. Significant contents and major characteristics that emerged from the surveyed data were inferred and described. Since the meaningful contents reflect the reality of the company, more efficient promotion of smart factories will be possible in the future.

A Kind of Digital Intelligent System for the Ink Hue Analysis

  • Lin, Min;Cui, Yuanhui;Wang, Yu Ru
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.6
    • /
    • pp.779-785
    • /
    • 2007
  • This paper introduces a kind of new ink hue analysis system (HAS) based on the model-distinguishing technology and briefly casts light on the principle of the analysis. Also, it stresses the hardware structure, the software designing methods and programming procedure of the HAS as well as its interface. And the simulation result of the experiment data was given. The study shows that this kind of system can help to improve the color arrangements and managements of ink. The accuracy has reached ${\pm}0.5%$ compared with high precision density meter.

  • PDF

Design of Intelligent Material Quality Control System based on Pattern Analysis using Artificial Neural Network (인공 신경망의 패턴분석에 근거한 지능적 부품품질 관리시스템의 설계)

  • 이장희;유성진;박상찬
    • Journal of Korean Society for Quality Management
    • /
    • v.29 no.4
    • /
    • pp.38-53
    • /
    • 2001
  • In resolving industrial quality control problems, a vector of multiple quality characteristic variables is involved rather than a single variable. However, it is not guaranteed that a multivariate control chart based on statistical methods can monitor abnormal signal in case that small changes of relationship between each variables causes abnormal production process. Hence a quality control system for real-time monitoring of the multi-dimensional quality characteristic vector under a multivariate normal process is needed to enhance tile production system quality performance. A pattern analysis approach based on self-organizing map (SOM), an unsupervised learning technique of neural network, is applied to the design of such a quality control system. In this study we present a new material quality control system based on pattern analysis approach and illustrate the effectiveness of proposed system using actual electronic company material data.

  • PDF

Semi-supervised learning for sentiment analysis in mass social media (대용량 소셜 미디어 감성분석을 위한 반감독 학습 기법)

  • Hong, Sola;Chung, Yeounoh;Lee, Jee-Hyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.482-488
    • /
    • 2014
  • This paper aims to analyze user's emotion automatically by analyzing Twitter, a representative social network service (SNS). In order to create sentiment analysis models by using machine learning techniques, sentiment labels that represent positive/negative emotions are required. However it is very expensive to obtain sentiment labels of tweets. So, in this paper, we propose a sentiment analysis model by using self-training technique in order to utilize "data without sentiment labels" as well as "data with sentiment labels". Self-training technique is that labels of "data without sentiment labels" is determined by utilizing "data with sentiment labels", and then updates models using together with "data with sentiment labels" and newly labeled data. This technique improves the sentiment analysis performance gradually. However, it has a problem that misclassifications of unlabeled data in an early stage affect the model updating through the whole learning process because labels of unlabeled data never changes once those are determined. Thus, labels of "data without sentiment labels" needs to be carefully determined. In this paper, in order to get high performance using self-training technique, we propose 3 policies for updating "data with sentiment labels" and conduct a comparative analysis. The first policy is to select data of which confidence is higher than a given threshold among newly labeled data. The second policy is to choose the same number of the positive and negative data in the newly labeled data in order to avoid the imbalanced class learning problem. The third policy is to choose newly labeled data less than a given maximum number in order to avoid the updates of large amount of data at a time for gradual model updates. Experiments are conducted using Stanford data set and the data set is classified into positive and negative. As a result, the learned model has a high performance than the learned models by using "data with sentiment labels" only and the self-training with a regular model update policy.