• Title/Summary/Keyword: Intelligent Data Analysis

Search Result 1,456, Processing Time 0.027 seconds

A Study on the Self-Evolving Expert System using Neural Network and Fuzzy Rule Extraction (인공신경망과 퍼지규칙 추출을 이용한 상황적응적 전문가시스템 구축에 관한 연구)

  • 이건창;김진성
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.231-240
    • /
    • 2001
  • Conventional expert systems has been criticized due to its lack of capability to adapt to the changing decision-making environments. In literature, many methods have been proposed to make expert systems more environment-adaptive by incorporating fuzzy logic and neural networks. The objective of this paper is to propose a new approach to building a self-evolving expert system inference mechanism by integrating fuzzy neural network and fuzzy rule extraction technique. The main recipe of our proposed approach is to fuzzify the training data, train them by a fuzzy neural network, extract a set of fuzzy rules from the trained network, organize a knowledge base, and refine the fuzzy rules by applying a pruning algorithm when the decision-making environments are detected to be changed significantly. To prove the validity, we tested our proposed self-evolving expert systems inference mechanism by using the bankruptcy data, and compared its results with the conventional neural network. Non-parametric statistical analysis of the experimental results showed that our proposed approach is valid significantly.

  • PDF

Spatio-Temporal Analysis of Trajectory for Pedestrian Activity Recognition

  • Kim, Young-Nam;Park, Jin-Hee;Kim, Moon-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.961-968
    • /
    • 2018
  • Recently, researches on automatic recognition of human activities have been actively carried out with the emergence of various intelligent systems. Since a large amount of visual data can be secured through Closed Circuit Television, it is required to recognize human behavior in a dynamic situation rather than a static situation. In this paper, we propose new intelligent human activity recognition model using the trajectory information extracted from the video sequence. The proposed model consists of three steps: segmentation and partitioning of trajectory step, feature extraction step, and behavioral learning step. First, the entire trajectory is fuzzy partitioned according to the motion characteristics, and then temporal features and spatial features are extracted. Using the extracted features, four pedestrian behaviors were modeled by decision tree learning algorithm and performance evaluation was performed. The experiments in this paper were conducted using Caviar data sets. Experimental results show that trajectory provides good activity recognition accuracy by extracting instantaneous property and distinctive regional property.

Pattern Classification of Partial Discharge Data

  • Kim Sung-Ho;Bae Geum-Dong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.347-352
    • /
    • 2005
  • PD(Partial discharges) are small electrical sparks that occur within the electric insulation of cables, transformers and windings on motors. PD analysis is a proactive diagnostic approach that uses PD measurements to evaluate the integrity of this equipment. Recently, several diagnostic algorithms for classifying the type of PD and locating the defect position have been developed. In this work, a new PD recognition system is proposed, which utilizes approximate coefficients of wavelet transform as a feature vector, furthermore, introduces bank of Elman networks to recognize the various PD phenomena. In order to verify the performance of the proposed scheme, it is applied to the simulated PD data.

Fuzzy Logic-based Modeling of a Score (퍼지 이론을 이용한 악보의 모델링)

  • 손세호;권순학
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.264-269
    • /
    • 2001
  • In this paper, we interpret a score as a time series and deal with the fuzzy logic-based modeling of it. The musical notes in a score represent a lot of information about the length of a sound and pitches, etc. In this paper, using melodies, tones and pitches in a score, we transform data on a score into a time series. Once more, we foml the new Lime series by sliding a window through the time series. For analyzing the time series data, we make use of the Box-Jenkins s time series analysis. On the basis of the identified characteristics of time series, we construct the fuzzy model.

  • PDF

Fuzzy Logic-based Modeling of a Score (퍼지 이론을 이용한 악보의 모델링)

  • 손세호;권순학
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.211-214
    • /
    • 2001
  • In this paper, we interpret a score as a time series and deal with the fuzzy logic-based modeling of it. The musical notes in a score represent a lot of information about the length of a sound and pitches, etc. In this paper, using melodies, tones and pitches in a score, we transform data on a score into a time series. Once more, we form the new time series by sliding a window through the time series. For analyzing the time series data, we make use of the Box-Jenkinss time series analysis. On the basis of the identified characteristics of time series, we construct the fuzz model.

  • PDF

Factor Analysis for Transit Transfer using Public Traffic Card Data (대중교통카드를 이용한 환승요인분석)

  • Lee, Da-Eun;Oh, Ju-Taek
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.1
    • /
    • pp.50-63
    • /
    • 2017
  • While transit is inconvenient, it is also inevitable for the efficient public transportation. Reducing the number of transfers as much as possible is most important in providing the convenience of public transportation and facilitating the public transportation. As for the public transportation card data, 61,986 items on weekdays and 69,100 items on weekends were collected. Pattern analysis and traffic influence factors were analyzed using traffic data card. Trip chain results revealed that people have more transit transfers for shopping and leasure than commuting purposes on weekends and that commuting distance and time increase by 10 km and 9.9 minutes, respectively. Besides, results of the structural equation model showed that factor 1(total travel time, total travel distance), factor 2(number of people getting on and off), factor 3(transit time), and factor 4(number of bus connections, number of operations) were found to have significant effects on the number of transfers.

Analysis of Improvement Measures of Vertical Moving Facilities at Subway Stations for Elderly Users based on a Data Envelopment Analysis (자료포락분석 기반의 고령자를 위한 지하철 역사 수직이동시설의 개선방안 분석)

  • Lee, Eun Hak;Kho, Seoung-Young;Kim, Dong-Kyu
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.5
    • /
    • pp.60-71
    • /
    • 2017
  • The purpose of this study is to evaluate vertical moving facilities at subway stations for the elderly users and to analyze their improvement measures. To evaluate vertical moving facilities of the top 31 subway stations with the most trips in Seoul, a data envelopment analysis (DEA) is employed. The input variables for the DEA include the number and percentage of elderly users, which are calculated using smart card data. the output variables consist of the number of elevators and escalators per 100 steps. The results show that the average score of 31 subway stations is 0.62 and four stations, i.e., Jamsil, Gasan Complex, Konkuk University, and Dongmyo, have the highest score. These four subway stations are set as benchmarking groups for the other stations with the lower score. Based on the comparison with the benchmarking groups, the improvement measures for vertical moving facilities of each station are suggested and discussed.

Design of Meteorological Radar Echo Classifier Based on RBFNN Using Radial Velocity (시선속도를 고려한 RBFNN 기반 기상레이더 에코 분류기의 설계)

  • Bae, Jong-Soo;Song, Chan-Seok;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.242-247
    • /
    • 2015
  • In this study, we propose the design of Radial Basis Function Neural Network(RBFNN) classifier in order to classify between precipitation and non-precipitation echo. The characteristics of meteorological radar data is analyzed for classifying precipitation and non-precipitation echo. Input variables is selected as DZ, SDZ, VGZ, SPN, DZ_FR, VR by performing pre-processing of UF data based on the characteristics analysis and these are composed of training and test data. Finally, QC data being used in Korea Meteorological Administration is applied to compare with the performance results of proposed classifier.

A Study on the Fault Signal Process of Hierarchical Distributed Structure for Highway Maintenance systems using neural Network (신경회로망을 이용한 분산계층 구조용 도로 유지관리설비의 고장정보처리에 관한 연구)

  • 류승기;문학룡;홍규장;최도혁;한태환;유정웅
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.1
    • /
    • pp.69-76
    • /
    • 1999
  • This paper proposed a design of intelligent supervisory control systems for maintenance of highway traffic information equiprrent and processing algorithm of equiprrent fault data. The fault data of highway traffic equipment are transmitted from rerrnte supervisory controller to central supervisory system by real time, the transmitted fault data are anaIyzed the characteristic using evaluation algorithm of fault data in central supervisory system. The evaluation algorithm includes a neural network and fault knowlOOge-base for processing the multi-generated fault data. For validating the evaluation algorithm of intelligent supervisory control systems, the rrethod of analysis used to the five pattern of binary signal by transmitted real time and the opTclting user-interface constructed in central supervisory system.

  • PDF

A Comparison of Capabilities of Data Mining Tools

  • Choi, Youn-Seok;Kim, Jong-Geoun;Lee, Jong-Hee
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.2
    • /
    • pp.531-541
    • /
    • 2001
  • In this study, we compare the capabilities of the data mining tools of the most updated version objectively and provide the useful information in which enterprises and universities chose them. In particular, we compare the SAS/Enterprise Miner 3.0, SPSS/Clementine 5.2 and IBM/Intelligent Miner 6.1 which are well known and easily gotten.

  • PDF