• Title/Summary/Keyword: Intelligent Data Analysis

Search Result 1,456, Processing Time 0.034 seconds

Development of Beauty Experience Pattern Map Based on Consumer Emotions: Focusing on Cosmetics (소비자 감성 기반 뷰티 경험 패턴 맵 개발: 화장품을 중심으로)

  • Seo, Bong-Goon;Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.179-196
    • /
    • 2019
  • Recently, the "Smart Consumer" has been emerging. He or she is increasingly inclined to search for and purchase products by taking into account personal judgment or expert reviews rather than by relying on information delivered through manufacturers' advertising. This is especially true when purchasing cosmetics. Because cosmetics act directly on the skin, consumers respond seriously to dangerous chemical elements they contain or to skin problems they may cause. Above all, cosmetics should fit well with the purchaser's skin type. In addition, changes in global cosmetics consumer trends make it necessary to study this field. The desire to find one's own individualized cosmetics is being revealed to consumers around the world and is known as "Finding the Holy Grail." Many consumers show a deep interest in customized cosmetics with the cultural boom known as "K-Beauty" (an aspect of "Han-Ryu"), the growth of personal grooming, and the emergence of "self-culture" that includes "self-beauty" and "self-interior." These trends have led to the explosive popularity of cosmetics made in Korea in the Chinese and Southeast Asian markets. In order to meet the customized cosmetics needs of consumers, cosmetics manufacturers and related companies are responding by concentrating on delivering premium services through the convergence of ICT(Information, Communication and Technology). Despite the evolution of companies' responses regarding market trends toward customized cosmetics, there is no "Intelligent Data Platform" that deals holistically with consumers' skin condition experience and thus attaches emotions to products and services. To find the Holy Grail of customized cosmetics, it is important to acquire and analyze consumer data on what they want in order to address their experiences and emotions. The emotions consumers are addressing when purchasing cosmetics varies by their age, sex, skin type, and specific skin issues and influences what price is considered reasonable. Therefore, it is necessary to classify emotions regarding cosmetics by individual consumer. Because of its importance, consumer emotion analysis has been used for both services and products. Given the trends identified above, we judge that consumer emotion analysis can be used in our study. Therefore, we collected and indexed data on consumers' emotions regarding their cosmetics experiences focusing on consumers' language. We crawled the cosmetics emotion data from SNS (blog and Twitter) according to sales ranking ($1^{st}$ to $99^{th}$), focusing on the ample/serum category. A total of 357 emotional adjectives were collected, and we combined and abstracted similar or duplicate emotional adjectives. We conducted a "Consumer Sentiment Journey" workshop to build a "Consumer Sentiment Dictionary," and this resulted in a total of 76 emotional adjectives regarding cosmetics consumer experience. Using these 76 emotional adjectives, we performed clustering with the Self-Organizing Map (SOM) method. As a result of the analysis, we derived eight final clusters of cosmetics consumer sentiments. Using the vector values of each node for each cluster, the characteristics of each cluster were derived based on the top ten most frequently appearing consumer sentiments. Different characteristics were found in consumer sentiments in each cluster. We also developed a cosmetics experience pattern map. The study results confirmed that recommendation and classification systems that consider consumer emotions and sentiments are needed because each consumer differs in what he or she pursues and prefers. Furthermore, this study reaffirms that the application of emotion and sentiment analysis can be extended to various fields other than cosmetics, and it implies that consumer insights can be derived using these methods. They can be used not only to build a specialized sentiment dictionary using scientific processes and "Design Thinking Methodology," but we also expect that these methods can help us to understand consumers' psychological reactions and cognitive behaviors. If this study is further developed, we believe that it will be able to provide solutions based on consumer experience, and therefore that it can be developed as an aspect of marketing intelligence.

Mining Interesting Sequential Pattern with a Time-interval Constraint for Efficient Analyzing a Web-Click Stream (웹 클릭 스트림의 효율적 분석을 위한 시간 간격 제한을 활용한 관심 순차패턴 탐색)

  • Chang, Joong-Hyuk
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.2
    • /
    • pp.19-29
    • /
    • 2011
  • Due to the development of web technologies and the increasing use of smart devices such as smart phone, in recent various web services are widely used in many application fields. In this environment, the topic of supporting personalized and intelligent web services have been actively researched, and an analysis technique on a web-click stream generated from web usage logs is one of the essential techniques related to the topic. In this paper, for efficient analyzing a web-click stream of sequences, a sequential pattern mining technique is proposed, which satisfies the basic requirements for data stream processing and finds a refined mining result. For this purpose, a concept of interesting sequential patterns with a time-interval constraint is defined, which uses not on1y the order of items in a sequential pattern but also their generation times. In addition, A mining method to find the interesting sequential patterns efficiently over a data stream such as a web-click stream is proposed. The proposed method can be effectively used to various computing application fields such as E-commerce, bio-informatics, and USN environments, which generate data as a form of data streams.

Design and Implementation of Sequential Pattern Miner to Analyze Alert Data Pattern (경보데이터 패턴 분석을 위한 순차 패턴 마이너 설계 및 구현)

  • Shin, Moon-Sun;Paik, Woo-Jin
    • Journal of Internet Computing and Services
    • /
    • v.10 no.2
    • /
    • pp.1-13
    • /
    • 2009
  • Intrusion detection is a process that identifies the attacks and responds to the malicious intrusion actions for the protection of the computer and the network resources. Due to the fast development of the Internet, the types of intrusions become more complex recently and need immediate and correct responses because the frequent occurrences of a new intrusion type rise rapidly. Therefore, to solve these problems of the intrusion detection systems, we propose a sequential pattern miner for analysis of the alert data in order to support intelligent and automatic detection of the intrusion. Sequential pattern mining is one of the methods to find the patterns among the extracted items that are frequent in the fixed sequences. We apply the prefixSpan algorithm to find out the alert sequences. This method can be used to predict the actions of the sequential patterns and to create the rules of the intrusions. In this paper, we propose an extended prefixSpan algorithm which is designed to consider the specific characteristics of the alert data. The extended sequential pattern miner will be used as a part of alert data analyzer of intrusion detection systems. By using the created rules from the sequential pattern miner, the HA(high-level alert analyzer) of PEP(policy enforcement point), usually called IDS, performs the prediction of the sequence behaviors and changing patterns that were not visibly checked.

  • PDF

Performance Comparison of Anomaly Detection Algorithms: in terms of Anomaly Type and Data Properties (이상탐지 알고리즘 성능 비교: 이상치 유형과 데이터 속성 관점에서)

  • Jaeung Kim;Seung Ryul Jeong;Namgyu Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.229-247
    • /
    • 2023
  • With the increasing emphasis on anomaly detection across various fields, diverse anomaly detection algorithms have been developed for various data types and anomaly patterns. However, the performance of anomaly detection algorithms is generally evaluated on publicly available datasets, and the specific performance of each algorithm on anomalies of particular types remains unexplored. Consequently, selecting an appropriate anomaly detection algorithm for specific analytical contexts poses challenges. Therefore, in this paper, we aim to investigate the types of anomalies and various attributes of data. Subsequently, we intend to propose approaches that can assist in the selection of appropriate anomaly detection algorithms based on this understanding. Specifically, this study compares the performance of anomaly detection algorithms for four types of anomalies: local, global, contextual, and clustered anomalies. Through further analysis, the impact of label availability, data quantity, and dimensionality on algorithm performance is examined. Experimental results demonstrate that the most effective algorithm varies depending on the type of anomaly, and certain algorithms exhibit stable performance even in the absence of anomaly-specific information. Furthermore, in some types of anomalies, the performance of unsupervised anomaly detection algorithms was observed to be lower than that of supervised and semi-supervised learning algorithms. Lastly, we found that the performance of most algorithms is more strongly influenced by the type of anomalies when the data quantity is relatively scarce or abundant. Additionally, in cases of higher dimensionality, it was noted that excellent performance was exhibited in detecting local and global anomalies, while lower performance was observed for clustered anomaly types.

Personalized Session-based Recommendation for Set-Top Box Audience Targeting (셋톱박스 오디언스 타겟팅을 위한 세션 기반 개인화 추천 시스템 개발)

  • Jisoo Cha;Koosup Jeong;Wooyoung Kim;Jaewon Yang;Sangduk Baek;Wonjun Lee;Seoho Jang;Taejoon Park;Chanwoo Jeong;Wooju Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.323-338
    • /
    • 2023
  • TV advertising with deep analysis of watching pattern of audiences is important to set-top box audience targeting. Applying session-based recommendation model(SBR) to internet commercial, or recommendation based on searching history of user showed its effectiveness in previous studies, but applying SBR to the TV advertising was difficult in South Korea due to data unavailabilities. Also, traditional SBR has limitations for dealing with user preferences, especially in data with user identification information. To tackle with these problems, we first obtain set-top box data from three major broadcasting companies in South Korea(SKB, KT, LGU+) through collaboration with Korea Broadcast Advertising Corporation(KOBACO), and this data contains of watching sequence of 4,847 anonymized users for 6 month respectively. Second, we develop personalized session-based recommendation model to deal with hierarchical data of user-session-item. Experiments conducted on set-top box audience dataset and two other public dataset for validation. In result, our proposed model outperformed baseline model in some criteria.

Inferring and Visualizing Semantic Relationships in Web-based Social Network (웹 기반 소셜 네트워크에서 시맨틱 관계 추론 및 시각화)

  • Lee, Seung-Hoon;Kim, Ji-Hyeok;Kim, Heung-Nam;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.1
    • /
    • pp.87-102
    • /
    • 2009
  • With the growth of Web 2.0, lots of services allow yours to post their personal information and useful knowledges on networked information spaces such as blogs and online communities etc. As the services are generalized, recent researches related to social network have gained momentum. However, most social network services do not support machine-processable semantic knowledge, so that the information cannot be shared and reused between different domains. Moreover, as explicit definitions of relationships between individual social entities do not be described, it is difficult to analyze social network for inferring unknown semantic relationships. To overcome these limitations, in this paper, we propose a social network analysis system with personal photographic data up-loaded by virtual community users. By using ontology, an informative connectivity between a face entity extracted from photo data and a person entity which already have social relationships was defined clearly and semantic social links were inferred with domain rules. Then the inferred links were provided to yours as a visualized graph. Based on the graph, more efficient social network analysis was achieved in online community.

  • PDF

The Study on the Network Targeting Using the Non-financial Value of Customer (고객의 비재무적 가치를 이용한 네트워크 타겟팅에 관한 연구)

  • Kim, Jin;Oh, Yoon-Jo;Park, Joo-Seok;Kim, Kyung-Hee;Lee, Jung-Hyun
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.109-128
    • /
    • 2010
  • The purpose of our research is to figure out the 'non-financial value' of consumers applying networks amongst consumer groups, the data-based marketing strategy to the analysis and delve into the ways for enhancing effectives in marketing activities by adapting the value to the marketing. To verify the authenticity of the points, we did the empirical test on the consumer group using 'the Essence Cosmetics Products' of high involvement that is deeply affected by consumer perceptions and the word-of-mouth activities. 1) The empirical analysis reveals the following features. First, the segmented market for 'Essence Consumer' is composed of several independent networks, each network shows to have the consumers that is high degree centrality and closeness centrality. Second, the result proves the authenticity of the non-financial value for boosting corporate profits by the high degree centrality and closeness centrality consumer's word-of-mouth activities. Lastly, we verify that there lies a difference in the network structure of 'Essence Cosmetics Market'per each product origin(domestic, foreign) and demographic characteristics. It does, therefore, indicate the need to consider the features applying mutually complementary for the network targeting.

A Study on Commodity Asset Investment Model Based on Machine Learning Technique (기계학습을 활용한 상품자산 투자모델에 관한 연구)

  • Song, Jin Ho;Choi, Heung Sik;Kim, Sun Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.127-146
    • /
    • 2017
  • Services using artificial intelligence have begun to emerge in daily life. Artificial intelligence is applied to products in consumer electronics and communications such as artificial intelligence refrigerators and speakers. In the financial sector, using Kensho's artificial intelligence technology, the process of the stock trading system in Goldman Sachs was improved. For example, two stock traders could handle the work of 600 stock traders and the analytical work for 15 people for 4weeks could be processed in 5 minutes. Especially, big data analysis through machine learning among artificial intelligence fields is actively applied throughout the financial industry. The stock market analysis and investment modeling through machine learning theory are also actively studied. The limits of linearity problem existing in financial time series studies are overcome by using machine learning theory such as artificial intelligence prediction model. The study of quantitative financial data based on the past stock market-related numerical data is widely performed using artificial intelligence to forecast future movements of stock price or indices. Various other studies have been conducted to predict the future direction of the market or the stock price of companies by learning based on a large amount of text data such as various news and comments related to the stock market. Investing on commodity asset, one of alternative assets, is usually used for enhancing the stability and safety of traditional stock and bond asset portfolio. There are relatively few researches on the investment model about commodity asset than mainstream assets like equity and bond. Recently machine learning techniques are widely applied on financial world, especially on stock and bond investment model and it makes better trading model on this field and makes the change on the whole financial area. In this study we made investment model using Support Vector Machine among the machine learning models. There are some researches on commodity asset focusing on the price prediction of the specific commodity but it is hard to find the researches about investment model of commodity as asset allocation using machine learning model. We propose a method of forecasting four major commodity indices, portfolio made of commodity futures, and individual commodity futures, using SVM model. The four major commodity indices are Goldman Sachs Commodity Index(GSCI), Dow Jones UBS Commodity Index(DJUI), Thomson Reuters/Core Commodity CRB Index(TRCI), and Rogers International Commodity Index(RI). We selected each two individual futures among three sectors as energy, agriculture, and metals that are actively traded on CME market and have enough liquidity. They are Crude Oil, Natural Gas, Corn, Wheat, Gold and Silver Futures. We made the equally weighted portfolio with six commodity futures for comparing with other commodity indices. We set the 19 macroeconomic indicators including stock market indices, exports & imports trade data, labor market data, and composite leading indicators as the input data of the model because commodity asset is very closely related with the macroeconomic activities. They are 14 US economic indicators, two Chinese economic indicators and two Korean economic indicators. Data period is from January 1990 to May 2017. We set the former 195 monthly data as training data and the latter 125 monthly data as test data. In this study, we verified that the performance of the equally weighted commodity futures portfolio rebalanced by the SVM model is better than that of other commodity indices. The prediction accuracy of the model for the commodity indices does not exceed 50% regardless of the SVM kernel function. On the other hand, the prediction accuracy of equally weighted commodity futures portfolio is 53%. The prediction accuracy of the individual commodity futures model is better than that of commodity indices model especially in agriculture and metal sectors. The individual commodity futures portfolio excluding the energy sector has outperformed the three sectors covered by individual commodity futures portfolio. In order to verify the validity of the model, it is judged that the analysis results should be similar despite variations in data period. So we also examined the odd numbered year data as training data and the even numbered year data as test data and we confirmed that the analysis results are similar. As a result, when we allocate commodity assets to traditional portfolio composed of stock, bond, and cash, we can get more effective investment performance not by investing commodity indices but by investing commodity futures. Especially we can get better performance by rebalanced commodity futures portfolio designed by SVM model.

Construction of Consumer Confidence index based on Sentiment analysis using News articles (뉴스기사를 이용한 소비자의 경기심리지수 생성)

  • Song, Minchae;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.1-27
    • /
    • 2017
  • It is known that the economic sentiment index and macroeconomic indicators are closely related because economic agent's judgment and forecast of the business conditions affect economic fluctuations. For this reason, consumer sentiment or confidence provides steady fodder for business and is treated as an important piece of economic information. In Korea, private consumption accounts and consumer sentiment index highly relevant for both, which is a very important economic indicator for evaluating and forecasting the domestic economic situation. However, despite offering relevant insights into private consumption and GDP, the traditional approach to measuring the consumer confidence based on the survey has several limits. One possible weakness is that it takes considerable time to research, collect, and aggregate the data. If certain urgent issues arise, timely information will not be announced until the end of each month. In addition, the survey only contains information derived from questionnaire items, which means it can be difficult to catch up to the direct effects of newly arising issues. The survey also faces potential declines in response rates and erroneous responses. Therefore, it is necessary to find a way to complement it. For this purpose, we construct and assess an index designed to measure consumer economic sentiment index using sentiment analysis. Unlike the survey-based measures, our index relies on textual analysis to extract sentiment from economic and financial news articles. In particular, text data such as news articles and SNS are timely and cover a wide range of issues; because such sources can quickly capture the economic impact of specific economic issues, they have great potential as economic indicators. There exist two main approaches to the automatic extraction of sentiment from a text, we apply the lexicon-based approach, using sentiment lexicon dictionaries of words annotated with the semantic orientations. In creating the sentiment lexicon dictionaries, we enter the semantic orientation of individual words manually, though we do not attempt a full linguistic analysis (one that involves analysis of word senses or argument structure); this is the limitation of our research and further work in that direction remains possible. In this study, we generate a time series index of economic sentiment in the news. The construction of the index consists of three broad steps: (1) Collecting a large corpus of economic news articles on the web, (2) Applying lexicon-based methods for sentiment analysis of each article to score the article in terms of sentiment orientation (positive, negative and neutral), and (3) Constructing an economic sentiment index of consumers by aggregating monthly time series for each sentiment word. In line with existing scholarly assessments of the relationship between the consumer confidence index and macroeconomic indicators, any new index should be assessed for its usefulness. We examine the new index's usefulness by comparing other economic indicators to the CSI. To check the usefulness of the newly index based on sentiment analysis, trend and cross - correlation analysis are carried out to analyze the relations and lagged structure. Finally, we analyze the forecasting power using the one step ahead of out of sample prediction. As a result, the news sentiment index correlates strongly with related contemporaneous key indicators in almost all experiments. We also find that news sentiment shocks predict future economic activity in most cases. In almost all experiments, the news sentiment index strongly correlates with related contemporaneous key indicators. Furthermore, in most cases, news sentiment shocks predict future economic activity; in head-to-head comparisons, the news sentiment measures outperform survey-based sentiment index as CSI. Policy makers want to understand consumer or public opinions about existing or proposed policies. Such opinions enable relevant government decision-makers to respond quickly to monitor various web media, SNS, or news articles. Textual data, such as news articles and social networks (Twitter, Facebook and blogs) are generated at high-speeds and cover a wide range of issues; because such sources can quickly capture the economic impact of specific economic issues, they have great potential as economic indicators. Although research using unstructured data in economic analysis is in its early stages, but the utilization of data is expected to greatly increase once its usefulness is confirmed.

Social Network Analysis for New Product Recommendation (신상품 추천을 위한 사회연결망분석의 활용)

  • Cho, Yoon-Ho;Bang, Joung-Hae
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.4
    • /
    • pp.183-200
    • /
    • 2009
  • Collaborative Filtering is one of the most used recommender systems. However, basically it cannot be used to recommend new products to customers because it finds products only based on the purchasing history of each customer. In order to cope with this shortcoming, many researchers have proposed the hybrid recommender system, which is a combination of collaborative filtering and content-based filtering. Content-based filtering recommends the products whose attributes are similar to those of the products that the target customers prefer. However, the hybrid method is used only for the limited categories of products such as music and movie, which are the products whose attributes are easily extracted. Therefore it is essential to find a more effective approach to recommend to customers new products in any category. In this study, we propose a new recommendation method which applies centrality concept widely used to analyze the relational and structural characteristics in social network analysis. The new products are recommended to the customers who are highly likely to buy the products, based on the analysis of the relationships among products by using centrality. The recommendation process consists of following four steps; purchase similarity analysis, product network construction, centrality analysis, and new product recommendation. In order to evaluate the performance of this proposed method, sales data from H department store, one of the well.known department stores in Korea, is used.

  • PDF