• Title/Summary/Keyword: Intelligent Control Method

Search Result 1,379, Processing Time 0.032 seconds

Night-to-Day Road Image Translation with Generative Adversarial Network for Driver Safety Enhancement (운전자 안정성 향상을 위한 Generative Adversarial Network 기반의 야간 도로 영상 변환 시스템)

  • Ahn, Namhyun;Kang, Suk-Ju
    • Journal of Broadcast Engineering
    • /
    • v.23 no.6
    • /
    • pp.760-767
    • /
    • 2018
  • Advanced driver assistance system(ADAS) is a major technique in the intelligent vehicle field. The techniques for ADAS can be separated in two classes, i.e., methods that directly control the movement of vehicle and that indirectly provide convenience to driver. In this paper, we propose a novel system that gives a visual assistance to driver by translating a night road image to a day road image. We use the black box images capturing the front road view of vehicle as inputs. The black box images are cropped into three parts and simultaneously translated into day images by the proposed image translation module. Then, the translated images are recollected to original size. The experimental result shows that the proposed method generates realistic images and outperforms the conventional algorithms.

Development of Multi-DoF Automatic Nasopharyngeal Swab Sampling Robot (다자유도 비강 자동 검체 채취 로봇 메커니즘 개발)

  • Jongbok Lee;Hobin Kim;Sunwoo Kim;Sangdo Kim;Hoseok Lee;Yong-Jae Kim;Shinsuk Park;Jongwon Lee
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.2
    • /
    • pp.164-171
    • /
    • 2023
  • To control the spread of COVID-19, it is important to identify the infection in its incipient stages so that the infected persons can be dealt with accordingly. The currently used face to face sampling method may increase the risk of infection for medical professionals as it exposes them to the asymptomatic yet infectious patients. This can result in further increases in the load on the medical system and workload of the medical staff. As a solution to this problem, in this paper, we present a robotic system for rapid non-face-to-face automatic nasopharyngeal swab sample collection. The system consists of a custom designed 7-DoF manipulator equipped with a specially developed safety mechanism for restricting the maximum force applied by the tip of the swab. During the swab sampling process, the force applied by the tip of the swab is continuously monitored in real-time by a 3-axis force sensor in order to detect contact with the nasopharynx. The possibility of using this system for automaticnasopharyngeal swab sample collection is proven through experimentation with a phantom model.

Routing optimization algorithm for logistics virtual monitoring based on VNF dynamic deployment

  • Qiao, Qiujuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1708-1734
    • /
    • 2022
  • In the development of logistics system, the breakthrough of important technologies such as technology platform for logistics information management and control is the key content of the study. Based on Javascript and JQuery, the logistics system realizes real-time monitoring, collection of historical status data, statistical analysis and display, intelligent recommendation and other functions. In order to strengthen the cooperation of warehouse storage, enhance the utilization rate of resources, and achieve the purpose of real-time and visual supervision of transportation equipment and cargo tracking, this paper studies the VNF dynamic deployment and SFC routing problem in the network load change scenario based on the logistics system. The BIP model is used to model the VNF dynamic deployment and routing problem. The optimization objective is to minimize the total cost overhead generated by each SFCR. Furthermore, the application of the SFC mapping algorithm in the routing topology solving problem is proposed. Based on the concept of relative cost and the idea of topology transformation, the SFC-map algorithm can efficiently complete the dynamic deployment of VNF and the routing calculation of SFC by using multi-layer graph. In the simulation platform based on the logistics system, the proposed algorithm is compared with VNF-DRA algorithm and Provision Traffic algorithm in the network receiving rate, throughput, path end-to-end delay, deployment number, running time and utilization rate. According to the test results, it is verified that the test results of the optimization algorithm in this paper are obviously improved compared with the comparison method, and it has higher practical application and promotion value.

Selecting a Landmark for Repositioning Automated Driving Vehicles in a Tunnel (자율주행 차량의 터널내 측위오차 보정 지원시설 선정)

  • Kim, Hyoungsoo;Kim, Youngmin;Park, Bumjin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.5
    • /
    • pp.200-209
    • /
    • 2018
  • This study proposed a method to select existing facilities as a landmark in order to reset accumulated errors of dead reckoning in a tunnel difficult to receive GNSS signals in automated driving. First, related standards and regulations were reviewed in order to survey 'variety' on shapes and installation locations as a feature of facilities. Second, 'recognition' on facilities was examined using image and Lidar sensors. Last, 'regularity' in terms of installation locations and intervals was surveyed through related references. The results of this study selected a fire fighting box / lamp (50m), an evacuation corridor lamp (300m), a lane control system (500m), a maximum / minimum speed limit sign and a jet fan as a candidate landmark to reset positioning errors. Based on those facilities, it was determined that error correction was possible. The results of this study are expected to be used in repositioning of automated driving vehicles in a tunnel.

Development of LiDAR-Based MRM Algorithm for LKS System (LKS 시스템을 위한 라이다 기반 MRM 알고리즘 개발)

  • Son, Weon Il;Oh, Tae Young;Park, Kihong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.174-192
    • /
    • 2021
  • The LIDAR sensor, which provides higher cognitive performance than cameras and radar, is difficult to apply to ADAS or autonomous driving because of its high price. On the other hand, as the price is decreasing rapidly, expectations are rising to improve existing autonomous driving functions by taking advantage of the LIDAR sensor. In level 3 autonomous vehicles, when a dangerous situation in the cognitive module occurs due to a sensor defect or sensor limit, the driver must take control of the vehicle for manual driving. If the driver does not respond to the request, the system must automatically kick in and implement a minimum risk maneuver to maintain the risk within a tolerable level. In this study, based on this background, a LIDAR-based LKS MRM algorithm was developed for the case when the normal operation of LKS was not possible due to troubles in the cognitive system. From point cloud data collected by LIDAR, the algorithm generates the trajectory of the vehicle in front through object clustering and converts it to the target waypoints of its own. Hence, if the camera-based LKS is not operating normally, LIDAR-based path tracking control is performed as MRM. The HAZOP method was used to identify the risk sources in the LKS cognitive systems. B, and based on this, test scenarios were derived and used in the validation process by simulation. The simulation results indicated that the LIDAR-based LKS MRM algorithm of this study prevents lane departure in dangerous situations caused by various problems or difficulties in the LKS cognitive systems and could prevent possible traffic accidents.

Analysis of Safety and Mobility of Expressway Land Control System (길어깨차로제 시행에 따른 안전성 및 이동성 분석)

  • Park, Sung-ho;Lee, Yoseph;Kang, Sungkwan;Cho, Hyonbae;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.3
    • /
    • pp.1-19
    • /
    • 2021
  • The domastic hard shoulder running(HSR) System has been gradually expanding since its initial implementation in September 2007 with the aim of increasing capacity and resolving congestion. Hard Shoulder is used as a space for driver's visual comfort and a place for vehicles to evacuate in case of emergency, but it is replaced by a space for driving when the HSR System is implemented. Therefore, it was intended to determine the improvement effect before and after implementation of the HSR system through safety analysis and mobility analysis. The safety analysis analyzed the impact of traffic accidents by comparing HSR sections and similar sections. The mobility analysis was to determine the improvement effect by quantifying the speed and traffic volume changes before and after HSR System implementation. According to safety yanalysis, there is no effect of reducing traffic accidents when implementing the HSR System. In mobility analysis, the implementation of the HSR System significantly improved the speed of traffic during peak hours and significantly reduces slow and delay hours.

Card Battle Game Agent Based on Reinforcement Learning with Play Level Control (플레이 수준 조절이 가능한 강화학습 기반 카드형 대전 게임 에이전트)

  • Yong Cheol Lee;Chill woo Lee
    • Smart Media Journal
    • /
    • v.13 no.2
    • /
    • pp.32-43
    • /
    • 2024
  • Game agents which are behavioral agent for game playing are a crucial component of game satisfaction. However it takes a lot of time and effort to create game agents for various game levels, environments, and players. In addition, when the game environment changes such as adding contents or updating characters, new game agents need to be developed and the development difficulty gradually increases. And it is important to have a game agent that can be customized for different levels of players. This is because a game agent that can play games of various levels is more useful and can increase the satisfaction of more players than a high-level game agent. In this paper, we propose a method for learning and controlling the level of play of game agents that can be rapidly developed and fine-tuned for various game environments and changes. At this time, reinforcement learning applies a policy-based distributed reinforcement learning method IMPALA for flexible processing and fast learning of various behavioral structures. Once reinforcement learning is complete, we choose actions by sampling based on Softmax-Temperature method. From this result, we show that the game agent's play level decreases as the Temperature value increases. This shows that it is possible to easily control the play level.

An Analysis for Process Parameters in the Automatic $CO_2$ Welding Using the Taguchi Method (다구찌 방법을 이용한 $CO_2$ 자동용접의 공정변수 분석)

  • 김인주;박창언;김일수;성백섭;손준식;유관종;김학형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.596-599
    • /
    • 2004
  • The robotic $CO_2$ welding is a manufacturing process to produce high quality joints for metal and it could provide a capability of full automation to enhance productivity. Despite the widespread use in the various manufacturing industries, the full automation of the robotic $CO_2$ welding has not yet been achieved partly because the mathematical model for the process parameters of a given welding task is not fully understood and quantified. Several mathematical models to control welding quality, productivity, microstructure and weld properties in arc welding processes have been studied. However, it is not an easy task to apply them to the various practical situations because the relationship between the process parameters and the bead geometry is non-linear and also they are usually dependent on the specific experimental results. Practically, it is difficult, but important to know how to establish a mathematical model that can predict the result of the actual welding process and how to select the optimum welding condition under a certain constraint. In this research, an attempt has been made to develop an intelligent algorithm to predict the weld geometry (top-bead width, top-bead height, back-bead width and back-bead height) as a function of key process parameters in the robotic $CO_2$welding. To achieve this above objective, Taguchi method was employed using five different process parameters (tip gap, gas flow rate, welding speed, arc current, welding voltage) as a guide for optimization of process parameters.

  • PDF

Development of a Fast Charging System Utilizing Charge Profile and Cell Balance Control Technology for Large Capacity Lithium-ion Batteries (충전 프로파일 및 셀 밸런스 제어기술을 활용한 대용량 리튬이온 배터리 고속충전시스템 개발)

  • Yunana, Gani Dogara;Ahn, Jae Young;Park, Chan Won
    • Journal of Industrial Technology
    • /
    • v.40 no.1
    • /
    • pp.7-12
    • /
    • 2020
  • Lithium-ion cells have become the go-to energy source across all applications; however, dendritic growth remains an issue to tackle. While there have been various research conducted and possible solutions offered, there is yet to be one that efficiently rules out the problem without, however, introducing another. This paper seeks to present a fast charging method and system to which lithium-ion batteries are charged while maintaining their lifetime. In the proposed method, various lithium cells are charged under multiple profiles. The parameters of charge profiles that inflict damage to the cell's electrodes are obtained and used as thresholds. Thus, during charging, voltage, current, and temperature are actively controlled under these thresholds. In this way, dendrite formation suppressed charging is achieved, and battery life is maintained. The fast-charging system designed, comprises of a 1.5kW charger, an inbuilt 600W battery pack, and an intelligent BMS with cell balancing technology. The system was also designed to respond to the aging of the battery to provide adequate threshold values. Among other tests conducted by KCTL, the cycle test result showed a capacity drop of only 0.68% after 500 cycles, thereby proving the life maintaining capability of the proposed method and system.

Combined Artificial Bee Colony for Data Clustering (융합 인공벌군집 데이터 클러스터링 방법)

  • Kang, Bum-Su;Kim, Sung-Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.203-210
    • /
    • 2017
  • Data clustering is one of the most difficult and challenging problems and can be formally considered as a particular kind of NP-hard grouping problems. The K-means algorithm is one of the most popular and widely used clustering method because it is easy to implement and very efficient. However, it has high possibility to trap in local optimum and high variation of solutions with different initials for the large data set. Therefore, we need study efficient computational intelligence method to find the global optimal solution in data clustering problem within limited computational time. The objective of this paper is to propose a combined artificial bee colony (CABC) with K-means for initialization and finalization to find optimal solution that is effective on data clustering optimization problem. The artificial bee colony (ABC) is an algorithm motivated by the intelligent behavior exhibited by honeybees when searching for food. The performance of ABC is better than or similar to other population-based algorithms with the added advantage of employing fewer control parameters. Our proposed CABC method is able to provide near optimal solution within reasonable time to balance the converged and diversified searches. In this paper, the experiment and analysis of clustering problems demonstrate that CABC is a competitive approach comparing to previous partitioning approaches in satisfactory results with respect to solution quality. We validate the performance of CABC using Iris, Wine, Glass, Vowel, and Cloud UCI machine learning repository datasets comparing to previous studies by experiment and analysis. Our proposed KABCK (K-means+ABC+K-means) is better than ABCK (ABC+K-means), KABC (K-means+ABC), ABC, and K-means in our simulations.