• Title/Summary/Keyword: Intelligent Construction Equipment

Search Result 89, Processing Time 0.032 seconds

A Study on the Torque Characteristics of Rotary Dampers (로터리 댐퍼의 토오크 특성에 관한 연구)

  • Lee, Choon Tae
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.87-92
    • /
    • 2019
  • Rotary dampers are damping devices which provide high resistance to shaft rotation. Rotary dampers are being used in various areas to enable the gentle opening and closing of the rotation motion relative to home furniture, industry machinery and automotive parts. Rotary dampers can be installed directly at the rotating point of a various part and can achieve uniform, gentle movement which increases quality and value of products. And generally, the silicone fluid is used as the damping medium because of its stable viscous properties. The movement of these little decelerators can be achieved with a high viscosity of working fluid and throttles installed in the body of the rotary damper. The damping force can be achieved clockwise, anti-clockwise or in both directions according to the structure of the orifices or throttles. In this paper, the torque performances of the rotary damper containing air in the working fluid were studied. For this purpose, the torque characteristic of the rotary damper according to the variation of various operating conditions such as clearance of leakage, dimensions of groove orifice, content ratio of air, etc., were simulated with AMEsim software.

Design of Intelligent Servocontroller for Proportional Flow Control Solenoid Valve with Large Capacity (지능형 대용량 비례유량제어밸브 서보컨트롤러 설계)

  • Jung, G.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.3
    • /
    • pp.1-7
    • /
    • 2011
  • As the technologies of electronic device have advanced these days, most of mechanical systems are designed with electronic control unit to take advantage of control parameter adaption to operating conditions and firmware flexibilities as well. On-board diagnosis, which detects the system malfunction and identifies potential source of error with its own diagnostic criteria, and fail-safe that can switch the mode of operation in view of recognized error characteristics enables easy maintenance and troubleshooting as well as system protection. This paper dealt with the development of diagnosis and fail-safe function for proportional flow control valve. All type of errors related to valve control system components are investigated and assigned to a specific hexadecimal codes. Cumulative error detection algorithm is applied in order for the sensitivity and reliability to be appropriate. Embedded simulator which runs simultaneously with system program provides the virtual error simulation environment for expeditious development of error detection algorithm. The diagnosis function was verified both with solenoid valve and embedded simulator test and it will enhance the valve control system monitoring function.

An Analysis on Volumetric Displacement of Hydraulic Gerotor Pump/Motor using Energy and Torque Equilibrium - First Report: Case of Rotation of Inner and outer Rotors - (에너지보존과 토크평형을 이용한 제로터 유압 펌프/모터의 배제용적 해석 - 내·외부로터 회전 경우 -)

  • Kim, S.D.;Kim, D.M.;Ham, Y.B.
    • Journal of Drive and Control
    • /
    • v.10 no.2
    • /
    • pp.13-22
    • /
    • 2013
  • It is difficult to analytically derive a volumetric displacement formula of gerotor hydraulic pump/motor because geometric shape of rotors is complicated. An analytical method about the volumetric displacement is proposed in this work, which is relatively easy and based upon two physical concepts. The first one is energy conservation between hydraulic energy of the pump/motor and mechanical input/output energy. The second concept is torque equilibrium with respect to inner and outer rotors. The formula about the volumetric displacement is derived for the common case of inner and outer rotors rotate with respect to fixed axes. The formula is verified by comparing another analytical displacement formula, and it is numerically verified by comparing numerical results, which is calculated for geometric specification of a motor. The numerical displacement is calculated through CAD software program and MATLAB program. The proposed analytical formula can be utilized in analysis and design of hydraulic gerotor motors.

A Study on Evaluation Method of the Adaptive Cruise Control (ACC 차량의 시험평가 방법에 대한 연구)

  • Kim, Bong Ju;Lee, Seon Bong
    • Journal of Drive and Control
    • /
    • v.14 no.3
    • /
    • pp.8-17
    • /
    • 2017
  • With automobiles sharply increasing in numbers worldwide, we are faced with critical social issues such as traffic accidents, traffic jams, environmental pollution, and economic inefficiency. In response, research on ITS is promoted mainly by regions with advanced automotive industry such as the U.S., Europe, and Japan. While Korea is working on moving forward in the global market through developing and turning to global standards systems related to ASV (Advanced Safety Vehicle), the country is not fully prepared for such projects. The purpose of ACC (Adaptive Cruise Control) is to control a vehicle's longitudinal speed and distance and minimize driver workload. Such a system should be valuable in preventing accidents, as it reduces driver workload in the 21st-century world of telematics created by development of the automobile culture industry. In this light, the thesis presents a method to test and evaluate ACC system and a mathematical method to assess distance. For the proposed test and evaluation, theoretical values are tested with vehicle test and a database is acquired, by using vehicles equipped with an ACC system. Theoretical evaluation criteria for developing ACC system may be used and scenario-specific evaluation methods may find useful application through testing the formula proposed by comparing the database and mathematical method.

Development of Monitoring/Diagnosis/Control Device for intelligent equipment construction (지능형 설비 구축을 위한 감시/진단/제어 기기 개발)

  • Yang, Hang-Jun;Lee, Jun-Chol;Choi, In-Sun;Kim, Sung-Sik;Hong, Jung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.557-558
    • /
    • 2007
  • 변화, 발전하는 IT기술과 디지털 기술, 그리고 네트워킹 기술 등에 따라 변전소의 운용 및 자동화 부문에 있어서도 적지 않은 변화가 일어나고 있다. 변전소의 건설 및 운용 면에 있어서도 예외가 아니며, 관련된 관심 사항으로는 시스템 구축 및 운용 시의 경제적인 측면, 시스템의 신뢰성, 그리고 유지보수 및 설비 관리의 효율성 등을 언급할 수 있다. 최근의 기술 추세는 Ethernet 통신 기반의 Network Device를 근간으로 하는 시스템으로의 변신을 주장하고 있으며, 세계 유수의 전력 설비 Maker에서도 이에 부응하기 위한 Network Device를 개발, 출시하고 있는 실정이다. 당소에서도 이와 같은 기술 추세에 부응하여 소위 미래형 변전소에서 요구되는 각종 ND의 개발을 추진하고 있으며, 그 첫번째 결과물로 154kV GIS의 운용 시에 요구되는 각종 제어 및 감시를 위한 Digital Control Unit(이하 DCU)을 개발하였다. 두 번째로 이와 같은 DCU와 연계하여 기존의 Remote Control 기능을 구비하고 상위시스템과 연결되며 변전실내에서 운용되는 Remote Control Unit(이하 RCU)을 개발하였다. 마지막으로 예방진단 시스템과 관련하여 주요 전력 설비의 상태 정보를 취합하는 Serial 통신 기반의 Static Type의 Diagnostic Analysis Unit(이하 DAU)을 하나의 Network Device로 개발함으로써 감시, 진단, 제어 등의 요구기능이 일체화 된 네트워크 기반의 미래형 변전소 자동화 시스템 구축에 한걸음 다가가는 기반을 마련하였다.

  • PDF

A Study on the Optimal Design of Automotive Gas Spring (차량용 가스스프링의 최적설계에 관한 연구)

  • Lee, Choon Tae
    • Journal of Drive and Control
    • /
    • v.14 no.4
    • /
    • pp.45-50
    • /
    • 2017
  • The gas spring is a hydropneumatic adjusting element, consisting of a pressure tube, a piston rod, a piston and a connection fitting. The gas spring is filled with compressed nitrogen within the cylinder. The filling pressure acts on both sides of the piston and because of area difference it produces an extension force. Therefore, a gas spring is similar in function compare to mechanical coil spring. Conversely, optimization is a process of finding the best set of parameters to reach a goal while not violating certain constraints. The AMESim software provides NLPQL (Nonlinear Programming by Quadratic Lagrangian) and GA (genetic algorithm) for optimization. The NLPQL method builds a quadratic approximation to the Lagrange function and linear approximations to all output constraints at each iteration, starting with the identity matrix for the Hessian of the Lagrangian, and gradually updating it using the BFGS method. On each iteration, a quadratic programming problem is solved to find an improved design until the final convergence to the optimum design. In this study, we conducted optimization design of the gas spring reaction force with NLPQL.

A Study on the Optimization Design of Damper for the Improvement of Vehicle Suspension Performance (차량 현가장치 성능향상을 위한 댐퍼 최적화 설계에 대한 연구)

  • Lee, Choon Tae
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.74-80
    • /
    • 2018
  • A damper is a hydraulic device designed to absorb or eliminate shock impulses which is acting on the sprung mass of vehicle. It converting the kinetic energy of the shock into another form of energy, typically heat. In a vehicle, a damper reduce vibration of car, leading to improved ride comfort and running stability. Therefore, a damper is one of the most important components in a vehicle suspension system. Conventionally, the design process of vehicle suspensions has been based on trial and error approaches, where designers iteratively change the values of the design variables and reanalyze the system until acceptable design criteria are achieved. Therefore, the ability to tune a damper properly without trial and error is of great interest in suspension system design to reduce time and effort. For this reason, a many previous researches have been done on modeling and simulation of the damper. In this paper, we have conducted optimal design process to find optimal design parameters of damping force which minimize a acceleration of sprung mass for a given suspension system using genetic algorithm.

Disc Displacement Control of the Emergency Shut-Down Valve for LNG Bunkering (LNG 벙커링용 비상차단 밸브 디스크 변위 제어에 관한 연구)

  • Yoon, Jin Ho;Park, Ju Yeon;Jang, Ji Seong
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.28-34
    • /
    • 2021
  • Among the currently available types of fuel, LNG emits a relatively small amount of nitrogen oxide and carbon dioxide when it burns in the engine. However, since LNG is a flammable material, leakage during bunkering can lead to accidents, such as fires. Therefore, it is necessary to install a remote operation emergency shut-down (ESD) valve to block the flow and leakage of LNG in an emergency situation that occurs during bunkering. The ESD valve uses a hydraulic driving device consisting of a hydraulic control valve and a hydraulic motor to control globe valve disc displacement, which regulates the flow path for LNG transfer. At this time, there are various nonlinearities in hydraulic driving devices; hence, it is necessary to design a controller with robust control performance against these uncertainties. In this study, modeling of the ESD valve was carried out, and a sliding mode controller to control the displacement of the globe valve disc was designed. As a result, it was confirmed that the designed control performance could be achieved by overcoming nonlinearity characteristics using the designed controller.

A Study on Road Traffic Volume Survey Using Vehicle Specification DB (자동차 제원 DB를 활용한 도로교통량 조사방안 연구)

  • Ji min Kim;Dong seob Oh
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.2
    • /
    • pp.93-104
    • /
    • 2023
  • Currently, the permanent road traffic volume surveys under Road Act are conducted using a intrusive Automatic Vehicle Classification (AVC) equipments to classify 12 categories of vehicles. However, intrusive AVC equipment inevitably have friction with vehicles, and physical damage to sensors due to cracks in roads, plastic deformation, and road construction decreases the operation rate. As a result, accuracy and reliability in actual operation are deteriorated, and maintenance costs are also increasing. With the recent development of ITS technology, research to replace the intrusive AVC equipment is being conducted. However multiple equipments or self-built DB operations were required to classify 12 categories of vehicles. Therefore, this study attempted to prepare a method for classifying 12 categories of vehicles using vehicle specification information of the Vehicle Management Information System(VMIS), which is collected and managed in accordance with Motor Vehicle Management Act. In the future, it is expected to be used to upgrade and diversify road traffic statistics using vehicle specifications such as the introduction of a road traffic survey system using Automatic Number Plate Recognition(ANPR) and classification of eco-friendly vehicles.

Development of Object Detection Algorithm Using Laser Sensor for Intelligent Excavation Work (자동화 굴삭기 작업을 위한 레이저 선서의 장애물 탐지 알고리즘 개발)

  • Soh, Ji-Yune;Kim, Min-Woong;Lee, Jun-Bok;Han, Choong-Hee
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.364-367
    • /
    • 2008
  • Earthwork is very equipment-intensive task and researches related to automated excavation have been conducted. There is an issue to secure the safety for an automated excavating system. Therefore, this paper focuses on how to improve safety for semi- or fully-automated backhoe excavation. The primary objective of this research is to develop object detection algorithm for automated safety system in excavation work. In order to satisfy the research objective, a diverse sensing technologies are investigated and analysed in terms of functions, durability, and reliability and verified its performance by several tests. The authors developed the objects detecting algorithm for user interface program using laser sensor. The results of this study would be the basis for developing the automated object detection system.

  • PDF