• Title/Summary/Keyword: Intelligent CCTV

Search Result 177, Processing Time 0.026 seconds

Designing Dataset for Artificial Intelligence Learning for Cold Sea Fish Farming

  • Sung-Hyun KIM;Seongtak OH;Sangwon LEE
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.208-216
    • /
    • 2023
  • The purpose of our study is to design datasets for Artificial Intelligence learning for cold sea fish farming. Salmon is considered one of the most popular fish species among men and women of all ages, but most supplies depend on imports. Recently, salmon farming, which is rapidly emerging as a specialized industry in Gangwon-do, has attracted attention. Therefore, in order to successfully develop salmon farming, the need to systematically build data related to salmon and salmon farming and use it to develop aquaculture techniques is raised. Meanwhile, the catch of pollack continues to decrease. Efforts should be made to improve the major factors affecting pollack survival based on data, as well as increasing the discharge volume for resource recovery. To this end, it is necessary to systematically collect and analyze data related to pollack catch and ecology to prepare a sustainable resource management strategy. Image data was obtained using CCTV and underwater cameras to establish an intelligent aquaculture strategy for salmon and pollock, which are considered representative fish species in Gangwon-do. Using these data, we built learning data suitable for AI analysis and prediction. Such data construction can be used to develop models for predicting the growth of salmon and pollack, and to develop algorithms for AI services that can predict water temperature, one of the key variables that determine the survival rate of pollack. This in turn will enable intelligent aquaculture and resource management taking into account the ecological characteristics of fish species. These studies look forward to achievements on an important level for sustainable fisheries and fisheries resource management.

Realtime Vehicle Tracking and Region Detection in Indoor Parking Lot for Intelligent Parking Control (지능형 주차 관제를 위한 실내주차장에서 실시간 차량 추적 및 영역 검출)

  • Yeon, Seungho;Kim, Jaemin
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.418-427
    • /
    • 2016
  • A smart parking management requires to track a vehicle in a indoor parking lot and to detect the place where the vehicle is parked. An advanced parking system watches all space of the parking lot with CCTV cameras. We can use these cameras for vehicles tracking and detection. In order to cover a wide area with a camera, a fisheye lens is used. In this case the shape and size of an moving vehicle vary much with distance and angle to the camera. This makes vehicle detection and tracking difficult. In addition to the fisheye lens, the vehicle headlights also makes vehicle detection and tracking difficult. This paper describes a method of realtime vehicle detection and tracking robust to the harsh situation described above. In each image frame, we update the region of a vehicle and estimate the vehicle movement. First we approximate the shape of a car with a quadrangle and estimate the four sides of the car using multiple histograms of oriented gradient. Second we create a template by applying a distance transform to the car region and estimate the motion of the car with a template matching method.

Function Analysis for the active surveillance system of urban transit (도시철도의 능동적 감시체계를 위한 기능 분석)

  • An, Tae-Ki;Shin, Jeong-Ryul;Lee, Woo-Dong;Han, Seok-Yoon;Kim, Moon-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1027-1028
    • /
    • 2008
  • Most of the urban transit operation company in Korea have a passive surveillance system to monitor the status of the passengers and facilities in the urban transit service area. The surveillance system is based on CCTV, closed circuit television, and several sensors, such as a fire sensor. However, this system has some limitations to prevent and cope with the emergency quickly. So the urban transit operation companies have plans to be change their surveillance system to be active. The active surveillance system has an intelligent function to detect the event predefined by managers automatically. To construct the active surveillance system, there are a standard concept design and a function analysis. In this paper, we propose the classification of the functions of the active surveillance system for urban transit. We divide the functions into five parts, ordinary monitoring, safety monitoring, environment monitoring, administration support, and record management. And we describe the systems related to the every functions to clarify the classified functions.

  • PDF

A Study on Efficient Learning Units for Behavior-Recognition of People in Video (비디오에서 동체의 행위인지를 위한 효율적 학습 단위에 관한 연구)

  • Kwon, Ick-Hwan;Hadjer, Boubenna;Lee, Dohoon
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.196-204
    • /
    • 2017
  • Behavior of intelligent video surveillance system is recognized by analyzing the pattern of the object of interest by using the frame information of video inputted from the camera and analyzes the behavior. Detection of object's certain behaviors in the crowd has become a critical problem because in the event of terror strikes. Recognition of object's certain behaviors is an important but difficult problem in the area of computer vision. As the realization of big data utilizing machine learning, data mining techniques, the amount of video through the CCTV, Smart-phone and Drone's video has increased dramatically. In this paper, we propose a multiple-sliding window method to recognize the cumulative change as one piece in order to improve the accuracy of the recognition. The experimental results demonstrated the method was robust and efficient learning units in the classification of certain behaviors.

Shadow Removal Based on Chromaticity and Entropy for Efficient Moving Object Tracking (효과적인 이동물체 추적을 위한 색도 영상과 엔트로피 기반의 그림자 제거)

  • Park, Ki-Hong
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.387-392
    • /
    • 2014
  • Recently, various research for intelligent video surveillance system have been proposed, but the existing monitoring systems are inefficient because all of situational awareness is judged by the human. In this paper, shadow removal based moving object tracking method is proposed using the chromaticity and entropy image. The background subtraction model, effective in the context awareness environment, has been applied for moving object detection. After detecting the region of moving object, the shadow candidate region has been estimated and removed by RGB based chromaticity and minimum cross entropy images. For the validity of the proposed method, the highway video is used to experiment. Some experiments are conducted so as to verify the proposed method, and as a result, shadow removal and moving object tracking are well performed.

Overlap Removal and Background Updating for Associative Tracking of Multiple Vehicles (다중 차량 연관 추적을 위한 겹침 제거 및 배경영상 갱신)

  • Lim, Jun-Sik;Kim, Soo-Hyung;Lee, Chil-Woo;Lee, Myung-Eun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.1
    • /
    • pp.90-94
    • /
    • 2010
  • In this paper, we propose a vehicle tracking method that can be applied in the intelligent traffic information system. The proposed method mainly consists of two steps: overlap removal and background updating. In order to remove overlap, we detect the overlap based on the location of the vehicle from successive images. Background updating is to calculate a background using statistical analysis of successive images. We collected a set of test images from the traffic monitoring system and experimented. The experimental results show more than 96% of tracking accuracy.

A Study on Methods for the Domestic Diffusion of Intelligent Security Project : With a Focus on the Case of Smart City Integrated Platform (지능형 방범 사업의 국내 확산 방안 연구 : 스마트시티 통합플랫폼을 대상으로)

  • Shin, Young-Seob;Han, Sun-Hee;Lee, Jae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.474-484
    • /
    • 2019
  • In this age, where the social environment is changing rapidly and unpredictably, interest in safety from crime is increasing in Korean society. As the desire to live a life free from the fear of crime increases, interest in the construction of safe cities is also rising nationwide. To meet the national demand, the Korean government is promoting a project to link public disaster safety systems by involving municipalities, 112, 119, and other emergency services and institutions through the Smart City Integrated Platform in order to construct a smart safety net. This study investigates the linking of theSmart City Integrated Platform and theIntelligent Security Project. The results are as follows. 1. The linkage's objective is clear. 2. The system sector can provide information to accident-related organizations. 3. The scenario area can be expanded to a crime-prevention sector, and a long-term urban information integration infrastructure can be created. 4. Product testing is enabled by a smart city road map and through continuous consultation with relevant organizations. 5. Project diffusion to other local governments can be promoted with the continued addition of commercial products.

Development of Real-time Video Surveillance System Using the Intelligent Behavior Recognition Technique (지능형 행동인식 기술을 이용한 실시간 동영상 감시 시스템 개발)

  • Chang, Jae-Young;Hong, Sung-Mun;Son, Damy;Yoo, Hojin;Ahn, Hyoung-Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.161-168
    • /
    • 2019
  • Recently, video equipments such as CCTV, which is spreading rapidly, is being used as a means to monitor and cope with abnormal situations in almost governments, companies, and households. However, in most cases, since recognizing the abnormal situation is carried out by the monitoring person, the immediate response is difficult and is used only for post-analysis. In this paper, we present the results of the development of video surveillance system that automatically recognizing the abnormal situations and sending such events to the smartphone immediately using the latest deep learning technology. The proposed system extracts skeletons from the human objects in real time using Openpose library and then recognizes the human behaviors automatically using deep learning technology. To this end, we reconstruct Openpose library, which developed in the Caffe framework, on Darknet framework to improve real-time processing. We also verified the performance improvement through experiments. The system to be introduced in this paper has accurate and fast behavioral recognition performance and scalability, so it is expected that it can be used for video surveillance systems for various applications.

Development of Real-time Video Search System Using the Intelligent Object Recognition Technology (지능형 객체 인식 기술을 이용한 실시간 동영상 검색시스템)

  • Chang, Jae-Young;Kang, Chan-Hyeok;Yoon, Jae-Min;Cho, Jae-Won;Jung, Ji-Sung;Chun, Jonghoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.85-91
    • /
    • 2020
  • Recently, video-taping equipment such as CCTV have been seeing more use for crime prevention and general safety concerns. Since these video-taping equipment operates all throughout the day, the need for security personnel is lessened, and naturally costs incurred from managing such manpower should also decrease. However, technology currently used predominantly lacks self-sufficiency when given the task of searching for a specific object in the recorded video such as a person, and has to be done manually; current security-based video equipment is insufficient in an environment where real-time information retrieval is required. In this paper, we propose a technology that uses the latest deep-learning technology and OpenCV library to quickly search for a specific person in a video; the search is based on the clothing information that is inputted by the user and transmits the result in real time. We implemented our system to automatically recognize specific human objects in real time by using the YOLO library, whilst deep learning technology is used to classify human clothes into top/bottom clothes. Colors are also detected through the OpenCV library which are then all combined to identify the requested object. The system presented in this paper not only accurately and quickly recognizes a person object with a specific clothing, but also has a potential extensibility that can be used for other types of object recognition in a video surveillance system for various purposes.

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.