• Title/Summary/Keyword: Intelligence Fusion

Search Result 128, Processing Time 0.022 seconds

Management Plan for Intelligence Fusion Cluster of Graduate School (대학원 지능융합 클러스터 운영방안)

  • Kwon, Oh-Young;Kim, Han Jong;Park, Kwang-Bum;Kim, Tae Kyun;Park, Seung Chul;Choi, Kang-Sun
    • Journal of Practical Engineering Education
    • /
    • v.6 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • Intelligence Fusion cluster is a interdisciplinary program which consists of school of electrical, electronics, and communication, school of computer science and engineering, school of architecture and architectural engineering, and department of industrial design engineering. To make an effective management plan for intelligence fusion cluster, we surveyed students and faculty members who belong to the cluster. A management plan was derived based on this survey. The plan was presented in two ways: by curriculum improvement and research vitalization.

An Analysis of Information Fusion Characteristics between Radar and Electronic Intelligence System (레이더와 전자정보 장비의 정보융합 특성 분석)

  • Lim, Joong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.847-851
    • /
    • 2006
  • This paper presents a technology of information fusion between radar and electronic intelligence system. Radar can get range and direction information of targets and electronic intelligence system can get direction and electromagnetic information of targets which can be fused and identified together. We designed an information fusion unit in which information data is able to be added and compared and designed a display unit in which a fused information is totally displayed.

  • PDF

3D Dual-Fusion Attention Network for Brain Tumor Segmentation (뇌종양 분할을 위한 3D 이중 융합 주의 네트워크)

  • Hoang-Son Vo-Thanh;Tram-Tran Nguyen Quynh;Nhu-Tai Do;Soo-Hyung Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.496-498
    • /
    • 2023
  • Brain tumor segmentation problem has challenges in the tumor diversity of location, imbalance, and morphology. Attention mechanisms have recently been used widely to tackle medical segmentation problems efficiently by focusing on essential regions. In contrast, the fusion approaches enhance performance by merging mutual benefits from many models. In this study, we proposed a 3D dual fusion attention network to combine the advantages of fusion approaches and attention mechanisms by residual self-attention and local blocks. Compared to fusion approaches and related works, our proposed method has shown promising results on the BraTS 2018 dataset.

Local and Global Attention Fusion Network For Facial Emotion Recognition (얼굴 감정 인식을 위한 로컬 및 글로벌 어텐션 퓨전 네트워크)

  • Minh-Hai Tran;Tram-Tran Nguyen Quynh;Nhu-Tai Do;Soo-Hyung Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.493-495
    • /
    • 2023
  • Deep learning methods and attention mechanisms have been incorporated to improve facial emotion recognition, which has recently attracted much attention. The fusion approaches have improved accuracy by combining various types of information. This research proposes a fusion network with self-attention and local attention mechanisms. It uses a multi-layer perceptron network. The network extracts distinguishing characteristics from facial images using pre-trained models on RAF-DB dataset. We outperform the other fusion methods on RAD-DB dataset with impressive results.

Dialog-based multi-item recommendation using automatic evaluation

  • Euisok Chung;Hyun Woo Kim;Byunghyun Yoo;Ran Han;Jeongmin Yang;Hwa Jeon Song
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.277-289
    • /
    • 2024
  • In this paper, we describe a neural network-based application that recommends multiple items using dialog context input and simultaneously outputs a response sentence. Further, we describe a multi-item recommendation by specifying it as a set of clothing recommendations. For this, a multimodal fusion approach that can process both cloth-related text and images is required. We also examine achieving the requirements of downstream models using a pretrained language model. Moreover, we propose a gate-based multimodal fusion and multiprompt learning based on a pretrained language model. Specifically, we propose an automatic evaluation technique to solve the one-to-many mapping problem of multi-item recommendations. A fashion-domain multimodal dataset based on Koreans is constructed and tested. Various experimental environment settings are verified using an automatic evaluation method. The results show that our proposed method can be used to obtain confidence scores for multi-item recommendation results, which is different from traditional accuracy evaluation.

Emotion Recognition and Expression System of User using Multi-Modal Sensor Fusion Algorithm (다중 센서 융합 알고리즘을 이용한 사용자의 감정 인식 및 표현 시스템)

  • Yeom, Hong-Gi;Joo, Jong-Tae;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.20-26
    • /
    • 2008
  • As they have more and more intelligence robots or computers these days, so the interaction between intelligence robot(computer) - human is getting more and more important also the emotion recognition and expression are indispensable for interaction between intelligence robot(computer) - human. In this paper, firstly we extract emotional features at speech signal and facial image. Secondly we apply both BL(Bayesian Learning) and PCA(Principal Component Analysis), lastly we classify five emotions patterns(normal, happy, anger, surprise and sad) also, we experiment with decision fusion and feature fusion to enhance emotion recognition rate. The decision fusion method experiment on emotion recognition that result values of each recognition system apply Fuzzy membership function and the feature fusion method selects superior features through SFS(Sequential Forward Selection) method and superior features are applied to Neural Networks based on MLP(Multi Layer Perceptron) for classifying five emotions patterns. and recognized result apply to 2D facial shape for express emotion.

Transfer Learning-Based Feature Fusion Model for Classification of Maneuver Weapon Systems

  • Jinyong Hwang;You-Rak Choi;Tae-Jin Park;Ji-Hoon Bae
    • Journal of Information Processing Systems
    • /
    • v.19 no.5
    • /
    • pp.673-687
    • /
    • 2023
  • Convolutional neural network-based deep learning technology is the most commonly used in image identification, but it requires large-scale data for training. Therefore, application in specific fields in which data acquisition is limited, such as in the military, may be challenging. In particular, the identification of ground weapon systems is a very important mission, and high identification accuracy is required. Accordingly, various studies have been conducted to achieve high performance using small-scale data. Among them, the ensemble method, which achieves excellent performance through the prediction average of the pre-trained models, is the most representative method; however, it requires considerable time and effort to find the optimal combination of ensemble models. In addition, there is a performance limitation in the prediction results obtained by using an ensemble method. Furthermore, it is difficult to obtain the ensemble effect using models with imbalanced classification accuracies. In this paper, we propose a transfer learning-based feature fusion technique for heterogeneous models that extracts and fuses features of pre-trained heterogeneous models and finally, fine-tunes hyperparameters of the fully connected layer to improve the classification accuracy. The experimental results of this study indicate that it is possible to overcome the limitations of the existing ensemble methods by improving the classification accuracy through feature fusion between heterogeneous models based on transfer learning.

EMOS: Enhanced moving object detection and classification via sensor fusion and noise filtering

  • Dongjin Lee;Seung-Jun Han;Kyoung-Wook Min;Jungdan Choi;Cheong Hee Park
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.847-861
    • /
    • 2023
  • Dynamic object detection is essential for ensuring safe and reliable autonomous driving. Recently, light detection and ranging (LiDAR)-based object detection has been introduced and shown excellent performance on various benchmarks. Although LiDAR sensors have excellent accuracy in estimating distance, they lack texture or color information and have a lower resolution than conventional cameras. In addition, performance degradation occurs when a LiDAR-based object detection model is applied to different driving environments or when sensors from different LiDAR manufacturers are utilized owing to the domain gap phenomenon. To address these issues, a sensor-fusion-based object detection and classification method is proposed. The proposed method operates in real time, making it suitable for integration into autonomous vehicles. It performs well on our custom dataset and on publicly available datasets, demonstrating its effectiveness in real-world road environments. In addition, we will make available a novel three-dimensional moving object detection dataset called ETRI 3D MOD.

Multi-resolution Fusion Network for Human Pose Estimation in Low-resolution Images

  • Kim, Boeun;Choo, YeonSeung;Jeong, Hea In;Kim, Chung-Il;Shin, Saim;Kim, Jungho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.7
    • /
    • pp.2328-2344
    • /
    • 2022
  • 2D human pose estimation still faces difficulty in low-resolution images. Most existing top-down approaches scale up the target human bonding box images to the large size and insert the scaled image into the network. Due to up-sampling, artifacts occur in the low-resolution target images, and the degraded images adversely affect the accurate estimation of the joint positions. To address this issue, we propose a multi-resolution input feature fusion network for human pose estimation. Specifically, the bounding box image of the target human is rescaled to multiple input images of various sizes, and the features extracted from the multiple images are fused in the network. Moreover, we introduce a guiding channel which induces the multi-resolution input features to alternatively affect the network according to the resolution of the target image. We conduct experiments on MS COCO dataset which is a representative dataset for 2D human pose estimation, where our method achieves superior performance compared to the strong baseline HRNet and the previous state-of-the-art methods.

Multimodal Attention-Based Fusion Model for Context-Aware Emotion Recognition

  • Vo, Minh-Cong;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • v.18 no.3
    • /
    • pp.11-20
    • /
    • 2022
  • Human Emotion Recognition is an exciting topic that has been attracting many researchers for a lengthy time. In recent years, there has been an increasing interest in exploiting contextual information on emotion recognition. Some previous explorations in psychology show that emotional perception is impacted by facial expressions, as well as contextual information from the scene, such as human activities, interactions, and body poses. Those explorations initialize a trend in computer vision in exploring the critical role of contexts, by considering them as modalities to infer predicted emotion along with facial expressions. However, the contextual information has not been fully exploited. The scene emotion created by the surrounding environment, can shape how people perceive emotion. Besides, additive fusion in multimodal training fashion is not practical, because the contributions of each modality are not equal to the final prediction. The purpose of this paper was to contribute to this growing area of research, by exploring the effectiveness of the emotional scene gist in the input image, to infer the emotional state of the primary target. The emotional scene gist includes emotion, emotional feelings, and actions or events that directly trigger emotional reactions in the input image. We also present an attention-based fusion network, to combine multimodal features based on their impacts on the target emotional state. We demonstrate the effectiveness of the method, through a significant improvement on the EMOTIC dataset.