• Title/Summary/Keyword: Intelligence Based Society

Search Result 2,914, Processing Time 0.033 seconds

A Study on Recent Research Trend in Management of Technology Using Keywords Network Analysis (키워드 네트워크 분석을 통해 살펴본 기술경영의 최근 연구동향)

  • Kho, Jaechang;Cho, Kuentae;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.101-123
    • /
    • 2013
  • Recently due to the advancements of science and information technology, the socio-economic business areas are changing from the industrial economy to a knowledge economy. Furthermore, companies need to do creation of new value through continuous innovation, development of core competencies and technologies, and technological convergence. Therefore, the identification of major trends in technology research and the interdisciplinary knowledge-based prediction of integrated technologies and promising techniques are required for firms to gain and sustain competitive advantage and future growth engines. The aim of this paper is to understand the recent research trend in management of technology (MOT) and to foresee promising technologies with deep knowledge for both technology and business. Furthermore, this study intends to give a clear way to find new technical value for constant innovation and to capture core technology and technology convergence. Bibliometrics is a metrical analysis to understand literature's characteristics. Traditional bibliometrics has its limitation not to understand relationship between trend in technology management and technology itself, since it focuses on quantitative indices such as quotation frequency. To overcome this issue, the network focused bibliometrics has been used instead of traditional one. The network focused bibliometrics mainly uses "Co-citation" and "Co-word" analysis. In this study, a keywords network analysis, one of social network analysis, is performed to analyze recent research trend in MOT. For the analysis, we collected keywords from research papers published in international journals related MOT between 2002 and 2011, constructed a keyword network, and then conducted the keywords network analysis. Over the past 40 years, the studies in social network have attempted to understand the social interactions through the network structure represented by connection patterns. In other words, social network analysis has been used to explain the structures and behaviors of various social formations such as teams, organizations, and industries. In general, the social network analysis uses data as a form of matrix. In our context, the matrix depicts the relations between rows as papers and columns as keywords, where the relations are represented as binary. Even though there are no direct relations between papers who have been published, the relations between papers can be derived artificially as in the paper-keyword matrix, in which each cell has 1 for including or 0 for not including. For example, a keywords network can be configured in a way to connect the papers which have included one or more same keywords. After constructing a keywords network, we analyzed frequency of keywords, structural characteristics of keywords network, preferential attachment and growth of new keywords, component, and centrality. The results of this study are as follows. First, a paper has 4.574 keywords on the average. 90% of keywords were used three or less times for past 10 years and about 75% of keywords appeared only one time. Second, the keyword network in MOT is a small world network and a scale free network in which a small number of keywords have a tendency to become a monopoly. Third, the gap between the rich (with more edges) and the poor (with fewer edges) in the network is getting bigger as time goes on. Fourth, most of newly entering keywords become poor nodes within about 2~3 years. Finally, keywords with high degree centrality, betweenness centrality, and closeness centrality are "Innovation," "R&D," "Patent," "Forecast," "Technology transfer," "Technology," and "SME". The results of analysis will help researchers identify major trends in MOT research and then seek a new research topic. We hope that the result of the analysis will help researchers of MOT identify major trends in technology research, and utilize as useful reference information when they seek consilience with other fields of study and select a new research topic.

Effects of Customers' Relationship Networks on Organizational Performance: Focusing on Facebook Fan Page (고객 간 관계 네트워크가 조직성과에 미치는 영향: 페이스북 기업 팬페이지를 중심으로)

  • Jeon, Su-Hyeon;Kwahk, Kee-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.57-79
    • /
    • 2016
  • It is a rising trend that the number of users using one of the social media channels, the Social Network Service, so called the SNS, is getting increased. As per to this social trend, more companies have interest in this networking platform and start to invest their funds in it. It has received much attention as a tool spreading and expanding the message that a company wants to deliver to its customers and has been recognized as an important channel in terms of the relationship marketing with them. The environment of media that is radically changing these days makes possible for companies to approach their customers in various ways. Particularly, the social network service, which has been developed rapidly, provides the environment that customers can freely talk about products. For companies, it also works as a channel that gives customized information to customers. To succeed in the online environment, companies need to not only build the relationship between companies and customers but focus on the relationship between customers as well. In response to the online environment with the continuous development of technology, companies have tirelessly made the novel marketing strategy. Especially, as the one-to-one marketing to customers become available, it is more important for companies to maintain the relationship marketing with their customers. Among many SNS, Facebook, which many companies use as a communication channel, provides a fan page service for each company that supports its business. Facebook fan page is the platform that the event, information and announcement can be shared with customers using texts, videos, and pictures. Companies open their own fan pages in order to inform their companies and businesses. Such page functions as the websites of companies and has a characteristic of their brand communities such as blogs as well. As Facebook has become the major communication medium with customers, companies recognize its importance as the effective marketing channel, but they still need to investigate their business performances by using Facebook. Although there are infinite potentials in Facebook fan page that even has a function as a community between users, which other platforms do not, it is incomplete to regard companies' Facebook fan pages as communities and analyze them. In this study, it explores the relationship among customers through the network of the Facebook fan page users. The previous studies on a company's Facebook fan page were focused on finding out the effective operational direction by analyzing the use state of the company. However, in this study, it draws out the structural variable of the network, which customer committment can be measured by applying the social network analysis methodology and investigates the influence of the structural characteristics of network on the business performance of companies in an empirical way. Through each company's Facebook fan page, the network of users who engaged in the communication with each company is exploited and it is the one-mode undirected binary network that respectively regards users and the relationship of them in terms of their marketing activities as the node and link. In this network, it draws out the structural variable of network that can explain the customer commitment, who pressed "like," made comments and shared the Facebook marketing message, of each company by calculating density, global clustering coefficient, mean geodesic distance, diameter. By exploiting companies' historical performance such as net income and Tobin's Q indicator as the result variables, this study investigates influence on companies' business performances. For this purpose, it collects the network data on the subjects of 54 companies among KOSPI-listed companies, which have posted more than 100 articles on their Facebook fan pages during the data collection period. Then it draws out the network indicator of each company. The indicator related to companies' performances is calculated, based on the posted value on DART website of the Financial Supervisory Service. From the academic perspective, this study suggests a new approach through the social network analysis methodology to researchers who attempt to study the business-purpose utilization of the social media channel. From the practical perspective, this study proposes the more substantive marketing performance measurements to companies performing marketing activities through the social media and it is expected that it will bring a foundation of establishing smart business strategies by using the network indicators.

Robo-Advisor Algorithm with Intelligent View Model (지능형 전망모형을 결합한 로보어드바이저 알고리즘)

  • Kim, Sunwoong
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.39-55
    • /
    • 2019
  • Recently banks and large financial institutions have introduced lots of Robo-Advisor products. Robo-Advisor is a Robot to produce the optimal asset allocation portfolio for investors by using the financial engineering algorithms without any human intervention. Since the first introduction in Wall Street in 2008, the market size has grown to 60 billion dollars and is expected to expand to 2,000 billion dollars by 2020. Since Robo-Advisor algorithms suggest asset allocation output to investors, mathematical or statistical asset allocation strategies are applied. Mean variance optimization model developed by Markowitz is the typical asset allocation model. The model is a simple but quite intuitive portfolio strategy. For example, assets are allocated in order to minimize the risk on the portfolio while maximizing the expected return on the portfolio using optimization techniques. Despite its theoretical background, both academics and practitioners find that the standard mean variance optimization portfolio is very sensitive to the expected returns calculated by past price data. Corner solutions are often found to be allocated only to a few assets. The Black-Litterman Optimization model overcomes these problems by choosing a neutral Capital Asset Pricing Model equilibrium point. Implied equilibrium returns of each asset are derived from equilibrium market portfolio through reverse optimization. The Black-Litterman model uses a Bayesian approach to combine the subjective views on the price forecast of one or more assets with implied equilibrium returns, resulting a new estimates of risk and expected returns. These new estimates can produce optimal portfolio by the well-known Markowitz mean-variance optimization algorithm. If the investor does not have any views on his asset classes, the Black-Litterman optimization model produce the same portfolio as the market portfolio. What if the subjective views are incorrect? A survey on reports of stocks performance recommended by securities analysts show very poor results. Therefore the incorrect views combined with implied equilibrium returns may produce very poor portfolio output to the Black-Litterman model users. This paper suggests an objective investor views model based on Support Vector Machines(SVM), which have showed good performance results in stock price forecasting. SVM is a discriminative classifier defined by a separating hyper plane. The linear, radial basis and polynomial kernel functions are used to learn the hyper planes. Input variables for the SVM are returns, standard deviations, Stochastics %K and price parity degree for each asset class. SVM output returns expected stock price movements and their probabilities, which are used as input variables in the intelligent views model. The stock price movements are categorized by three phases; down, neutral and up. The expected stock returns make P matrix and their probability results are used in Q matrix. Implied equilibrium returns vector is combined with the intelligent views matrix, resulting the Black-Litterman optimal portfolio. For comparisons, Markowitz mean-variance optimization model and risk parity model are used. The value weighted market portfolio and equal weighted market portfolio are used as benchmark indexes. We collect the 8 KOSPI 200 sector indexes from January 2008 to December 2018 including 132 monthly index values. Training period is from 2008 to 2015 and testing period is from 2016 to 2018. Our suggested intelligent view model combined with implied equilibrium returns produced the optimal Black-Litterman portfolio. The out of sample period portfolio showed better performance compared with the well-known Markowitz mean-variance optimization portfolio, risk parity portfolio and market portfolio. The total return from 3 year-period Black-Litterman portfolio records 6.4%, which is the highest value. The maximum draw down is -20.8%, which is also the lowest value. Sharpe Ratio shows the highest value, 0.17. It measures the return to risk ratio. Overall, our suggested view model shows the possibility of replacing subjective analysts's views with objective view model for practitioners to apply the Robo-Advisor asset allocation algorithms in the real trading fields.

A study on the prediction of korean NPL market return (한국 NPL시장 수익률 예측에 관한 연구)

  • Lee, Hyeon Su;Jeong, Seung Hwan;Oh, Kyong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.123-139
    • /
    • 2019
  • The Korean NPL market was formed by the government and foreign capital shortly after the 1997 IMF crisis. However, this market is short-lived, as the bad debt has started to increase after the global financial crisis in 2009 due to the real economic recession. NPL has become a major investment in the market in recent years when the domestic capital market's investment capital began to enter the NPL market in earnest. Although the domestic NPL market has received considerable attention due to the overheating of the NPL market in recent years, research on the NPL market has been abrupt since the history of capital market investment in the domestic NPL market is short. In addition, decision-making through more scientific and systematic analysis is required due to the decline in profitability and the price fluctuation due to the fluctuation of the real estate business. In this study, we propose a prediction model that can determine the achievement of the benchmark yield by using the NPL market related data in accordance with the market demand. In order to build the model, we used Korean NPL data from December 2013 to December 2017 for about 4 years. The total number of things data was 2291. As independent variables, only the variables related to the dependent variable were selected for the 11 variables that indicate the characteristics of the real estate. In order to select the variables, one to one t-test and logistic regression stepwise and decision tree were performed. Seven independent variables (purchase year, SPC (Special Purpose Company), municipality, appraisal value, purchase cost, OPB (Outstanding Principle Balance), HP (Holding Period)). The dependent variable is a bivariate variable that indicates whether the benchmark rate is reached. This is because the accuracy of the model predicting the binomial variables is higher than the model predicting the continuous variables, and the accuracy of these models is directly related to the effectiveness of the model. In addition, in the case of a special purpose company, whether or not to purchase the property is the main concern. Therefore, whether or not to achieve a certain level of return is enough to make a decision. For the dependent variable, we constructed and compared the predictive model by calculating the dependent variable by adjusting the numerical value to ascertain whether 12%, which is the standard rate of return used in the industry, is a meaningful reference value. As a result, it was found that the hit ratio average of the predictive model constructed using the dependent variable calculated by the 12% standard rate of return was the best at 64.60%. In order to propose an optimal prediction model based on the determined dependent variables and 7 independent variables, we construct a prediction model by applying the five methodologies of discriminant analysis, logistic regression analysis, decision tree, artificial neural network, and genetic algorithm linear model we tried to compare them. To do this, 10 sets of training data and testing data were extracted using 10 fold validation method. After building the model using this data, the hit ratio of each set was averaged and the performance was compared. As a result, the hit ratio average of prediction models constructed by using discriminant analysis, logistic regression model, decision tree, artificial neural network, and genetic algorithm linear model were 64.40%, 65.12%, 63.54%, 67.40%, and 60.51%, respectively. It was confirmed that the model using the artificial neural network is the best. Through this study, it is proved that it is effective to utilize 7 independent variables and artificial neural network prediction model in the future NPL market. The proposed model predicts that the 12% return of new things will be achieved beforehand, which will help the special purpose companies make investment decisions. Furthermore, we anticipate that the NPL market will be liquidated as the transaction proceeds at an appropriate price.

Individual Thinking Style leads its Emotional Perception: Development of Web-style Design Evaluation Model and Recommendation Algorithm Depending on Consumer Regulatory Focus (사고가 시각을 바꾼다: 조절 초점에 따른 소비자 감성 기반 웹 스타일 평가 모형 및 추천 알고리즘 개발)

  • Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.171-196
    • /
    • 2018
  • With the development of the web, two-way communication and evaluation became possible and marketing paradigms shifted. In order to meet the needs of consumers, web design trends are continuously responding to consumer feedback. As the web becomes more and more important, both academics and businesses are studying consumer emotions and satisfaction on the web. However, some consumer characteristics are not well considered. Demographic characteristics such as age and sex have been studied extensively, but few studies consider psychological characteristics such as regulatory focus (i.e., emotional regulation). In this study, we analyze the effect of web style on consumer emotion. Many studies analyze the relationship between the web and regulatory focus, but most concentrate on the purpose of web use, particularly motivation and information search, rather than on web style and design. The web communicates with users through visual elements. Because the human brain is influenced by all five senses, both design factors and emotional responses are important in the web environment. Therefore, in this study, we examine the relationship between consumer emotion and satisfaction and web style and design. Previous studies have considered the effects of web layout, structure, and color on emotions. In this study, however, we excluded these web components, in contrast to earlier studies, and analyzed the relationship between consumer satisfaction and emotional indexes of web-style only. To perform this analysis, we collected consumer surveys presenting 40 web style themes to 204 consumers. Each consumer evaluated four themes. The emotional adjectives evaluated by consumers were composed of 18 contrast pairs, and the upper emotional indexes were extracted through factor analysis. The emotional indexes were 'softness,' 'modernity,' 'clearness,' and 'jam.' Hypotheses were established based on the assumption that emotional indexes have different effects on consumer satisfaction. After the analysis, hypotheses 1, 2, and 3 were accepted and hypothesis 4 was rejected. While hypothesis 4 was rejected, its effect on consumer satisfaction was negative, not positive. This means that emotional indexes such as 'softness,' 'modernity,' and 'clearness' have a positive effect on consumer satisfaction. In other words, consumers prefer emotions that are soft, emotional, natural, rounded, dynamic, modern, elaborate, unique, bright, pure, and clear. 'Jam' has a negative effect on consumer satisfaction. It means, consumer prefer the emotion which is empty, plain, and simple. Regulatory focus shows differences in motivation and propensity in various domains. It is important to consider organizational behavior and decision making according to the regulatory focus tendency, and it affects not only political, cultural, ethical judgments and behavior but also broad psychological problems. Regulatory focus also differs from emotional response. Promotion focus responds more strongly to positive emotional responses. On the other hand, prevention focus has a strong response to negative emotions. Web style is a type of service, and consumer satisfaction is affected not only by cognitive evaluation but also by emotion. This emotional response depends on whether the consumer will benefit or harm himself. Therefore, it is necessary to confirm the difference of the consumer's emotional response according to the regulatory focus which is one of the characteristics and viewpoint of the consumers about the web style. After MMR analysis result, hypothesis 5.3 was accepted, and hypothesis 5.4 was rejected. But hypothesis 5.4 supported in the opposite direction to the hypothesis. After validation, we confirmed the mechanism of emotional response according to the tendency of regulatory focus. Using the results, we developed the structure of web-style recommendation system and recommend methods through regulatory focus. We classified the regulatory focus group in to three categories that promotion, grey, prevention. Then, we suggest web-style recommend method along the group. If we further develop this study, we expect that the existing regulatory focus theory can be extended not only to the motivational part but also to the emotional behavioral response according to the regulatory focus tendency. Moreover, we believe that it is possible to recommend web-style according to regulatory focus and emotional desire which consumers most prefer.

A Study on the Characteristics of Enterprise R&D Capabilities Using Data Mining (데이터마이닝을 활용한 기업 R&D역량 특성에 관한 탐색 연구)

  • Kim, Sang-Gook;Lim, Jung-Sun;Park, Wan
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.1-21
    • /
    • 2021
  • As the global business environment changes, uncertainties in technology development and market needs increase, and competition among companies intensifies, interests and demands for R&D activities of individual companies are increasing. In order to cope with these environmental changes, R&D companies are strengthening R&D investment as one of the means to enhance the qualitative competitiveness of R&D while paying more attention to facility investment. As a result, facilities or R&D investment elements are inevitably a burden for R&D companies to bear future uncertainties. It is true that the management strategy of increasing investment in R&D as a means of enhancing R&D capability is highly uncertain in terms of corporate performance. In this study, the structural factors that influence the R&D capabilities of companies are explored in terms of technology management capabilities, R&D capabilities, and corporate classification attributes by utilizing data mining techniques, and the characteristics these individual factors present according to the level of R&D capabilities are analyzed. This study also showed cluster analysis and experimental results based on evidence data for all domestic R&D companies, and is expected to provide important implications for corporate management strategies to enhance R&D capabilities of individual companies. For each of the three viewpoints, detailed evaluation indexes were composed of 7, 2, and 4, respectively, to quantitatively measure individual levels in the corresponding area. In the case of technology management capability and R&D capability, the sub-item evaluation indexes that are being used by current domestic technology evaluation agencies were referenced, and the final detailed evaluation index was newly constructed in consideration of whether data could be obtained quantitatively. In the case of corporate classification attributes, the most basic corporate classification profile information is considered. In particular, in order to grasp the homogeneity of the R&D competency level, a comprehensive score for each company was given using detailed evaluation indicators of technology management capability and R&D capability, and the competency level was classified into five grades and compared with the cluster analysis results. In order to give the meaning according to the comparative evaluation between the analyzed cluster and the competency level grade, the clusters with high and low trends in R&D competency level were searched for each cluster. Afterwards, characteristics according to detailed evaluation indicators were analyzed in the cluster. Through this method of conducting research, two groups with high R&D competency and one with low level of R&D competency were analyzed, and the remaining two clusters were similar with almost high incidence. As a result, in this study, individual characteristics according to detailed evaluation indexes were analyzed for two clusters with high competency level and one cluster with low competency level. The implications of the results of this study are that the faster the replacement cycle of professional managers who can effectively respond to changes in technology and market demand, the more likely they will contribute to enhancing R&D capabilities. In the case of a private company, it is necessary to increase the intensity of input of R&D capabilities by enhancing the sense of belonging of R&D personnel to the company through conversion to a corporate company, and to provide the accuracy of responsibility and authority through the organization of the team unit. Since the number of technical commercialization achievements and technology certifications are occurring both in the case of contributing to capacity improvement and in case of not, it was confirmed that there is a limit in reviewing it as an important factor for enhancing R&D capacity from the perspective of management. Lastly, the experience of utility model filing was identified as a factor that has an important influence on R&D capability, and it was confirmed the need to provide motivation to encourage utility model filings in order to enhance R&D capability. As such, the results of this study are expected to provide important implications for corporate management strategies to enhance individual companies' R&D capabilities.

In-service teacher's perception on the mathematical modeling tasks and competency for designing the mathematical modeling tasks: Focused on reality (현직 수학 교사들의 수학적 모델링 과제에 대한 인식과 과제 개발 역량: 현실성을 중심으로)

  • Hwang, Seonyoung;Han, Sunyoung
    • The Mathematical Education
    • /
    • v.62 no.3
    • /
    • pp.381-400
    • /
    • 2023
  • As the era of solving various and complex problems in the real world using artificial intelligence and big data appears, problem-solving competencies that can solve realistic problems through a mathematical approach are required. In fact, the 2015 revised mathematics curriculum and the 2022 revised mathematics curriculum emphasize mathematical modeling as an activity and competency to solve real-world problems. However, the real-world problems presented in domestic and international textbooks have a high proportion of artificial problems that rarely occur in real-world. Accordingly, domestic and international countries are paying attention to the reality of mathematical modeling tasks and suggesting the need for authentic tasks that reflect students' daily lives. However, not only did previous studies focus on theoretical proposals for reality, but studies analyzing teachers' perceptions of reality and their competency to reflect reality in the task are insufficient. Accordingly, this study aims to analyze in-service mathematics teachers' perception of reality among the characteristics of tasks for mathematical modeling and the in-service mathematics teachers' competency for designing the mathematical modeling tasks. First of all, five criteria for satisfying the reality were established by analyzing literatures. Afterward, teacher training was conducted under the theme of mathematical modeling. Pre- and post-surveys for 41 in-service mathematics teachers who participated in the teacher training was conducted to confirm changes in perception of reality. The pre- and post- surveys provided a task that did not reflect reality, and in-service mathematics teachers determined whether the task given in surveys reflected reality and selected one reason for the judgment among five criteria for reality. Afterwards, frequency analysis was conducted by coding the results of the survey answered by in-service mathematics teachers in the pre- and post- survey, and frequencies were compared to confirm in-service mathematics teachers' perception changes on reality. In addition, the mathematical modeling tasks designed by in-service teachers were evaluated with the criteria for reality to confirm the teachers' competency for designing mathematical modeling tasks reflecting the reality. As a result, it was shown that in-service mathematics teachers changed from insufficient perception that only considers fragmentary criterion for reality to perceptions that consider all the five criteria of reality. In particular, as a result of analyzing the basis for judgment among in-service mathematics teachers whose judgment on reality was reversed in the pre- and post-survey, changes in the perception of in-service mathematics teachers was confirmed, who did not consider certain criteria as a criterion for reality in the pre-survey, but considered them as a criterion for reality in the post-survey. In addition, as a result of evaluating the tasks designed by in-service mathematics teachers for mathematical modeling, in-service mathematics teachers showed the competency to reflect reality in their tasks. However, among the five criteria for reality, the criterion for "situations that can occur in students' daily lives," "need to solve the task," and "require conclusions in a real-world situation" were relatively less reflected. In addition, it was found that the proportion of teachers with low task development competencies was higher in the teacher group who could not make the right judgment than in the teacher group who could make the right judgment on the reality of the task. Based on the results of these studies, this study provides implications for teacher education to enable mathematics teachers to apply mathematical modeling lesson in their classes.

A study on the classification of research topics based on COVID-19 academic research using Topic modeling (토픽모델링을 활용한 COVID-19 학술 연구 기반 연구 주제 분류에 관한 연구)

  • Yoo, So-yeon;Lim, Gyoo-gun
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.155-174
    • /
    • 2022
  • From January 2020 to October 2021, more than 500,000 academic studies related to COVID-19 (Coronavirus-2, a fatal respiratory syndrome) have been published. The rapid increase in the number of papers related to COVID-19 is putting time and technical constraints on healthcare professionals and policy makers to quickly find important research. Therefore, in this study, we propose a method of extracting useful information from text data of extensive literature using LDA and Word2vec algorithm. Papers related to keywords to be searched were extracted from papers related to COVID-19, and detailed topics were identified. The data used the CORD-19 data set on Kaggle, a free academic resource prepared by major research groups and the White House to respond to the COVID-19 pandemic, updated weekly. The research methods are divided into two main categories. First, 41,062 articles were collected through data filtering and pre-processing of the abstracts of 47,110 academic papers including full text. For this purpose, the number of publications related to COVID-19 by year was analyzed through exploratory data analysis using a Python program, and the top 10 journals under active research were identified. LDA and Word2vec algorithm were used to derive research topics related to COVID-19, and after analyzing related words, similarity was measured. Second, papers containing 'vaccine' and 'treatment' were extracted from among the topics derived from all papers, and a total of 4,555 papers related to 'vaccine' and 5,971 papers related to 'treatment' were extracted. did For each collected paper, detailed topics were analyzed using LDA and Word2vec algorithms, and a clustering method through PCA dimension reduction was applied to visualize groups of papers with similar themes using the t-SNE algorithm. A noteworthy point from the results of this study is that the topics that were not derived from the topics derived for all papers being researched in relation to COVID-19 (

    ) were the topic modeling results for each research topic (
    ) was found to be derived from For example, as a result of topic modeling for papers related to 'vaccine', a new topic titled Topic 05 'neutralizing antibodies' was extracted. A neutralizing antibody is an antibody that protects cells from infection when a virus enters the body, and is said to play an important role in the production of therapeutic agents and vaccine development. In addition, as a result of extracting topics from papers related to 'treatment', a new topic called Topic 05 'cytokine' was discovered. A cytokine storm is when the immune cells of our body do not defend against attacks, but attack normal cells. Hidden topics that could not be found for the entire thesis were classified according to keywords, and topic modeling was performed to find detailed topics. In this study, we proposed a method of extracting topics from a large amount of literature using the LDA algorithm and extracting similar words using the Skip-gram method that predicts the similar words as the central word among the Word2vec models. The combination of the LDA model and the Word2vec model tried to show better performance by identifying the relationship between the document and the LDA subject and the relationship between the Word2vec document. In addition, as a clustering method through PCA dimension reduction, a method for intuitively classifying documents by using the t-SNE technique to classify documents with similar themes and forming groups into a structured organization of documents was presented. In a situation where the efforts of many researchers to overcome COVID-19 cannot keep up with the rapid publication of academic papers related to COVID-19, it will reduce the precious time and effort of healthcare professionals and policy makers, and rapidly gain new insights. We hope to help you get It is also expected to be used as basic data for researchers to explore new research directions.

  • A Study on The 'Kao Zheng Pai'(考證派) of The Traditional Medicine of Japan (일본 '고증파(考證派)' 의학에 관한 연구)

    • Park, Hyun-Kuk;Kim, Ki-Wook
      • The Journal of Dong Guk Oriental Medicine
      • /
      • v.10
      • /
      • pp.1-40
      • /
      • 2008
    • 1.The 'Kao Zheng Pai'(考證派) comes from the 'Zhe Zhong Pai(折衷派)' and is a school that is influenced by the confucianism of the Qing dynasty. In Japan Inoue Kinga(井上金峨), Yoshida Koton(古田篁墩 $1745{\sim}1798$) became central members, and the rise of the methodology of historical research(考證學) influenced the members of the 'Zhe Zhong Pai', and the trend of historical research changed from confucianism to medicine, making a school of medicine based on the study of texts and proving that the classics were right. 2. Based on the function of 'Nei Qu Li'(內驅力) the 'Kao Zheng Pai', in the spirit of 'use confucianism as the base', researched letters, meanings and historical origins. Because they were influenced by the methodology of historical research(考證學) of the Qing era, they valued the evidential research of classic texts, and there was even one branch that did only historical research, the 'Rue Xue Kao Zheng Pai'(儒學考證派). Also, the 'Yi Xue Kao Zheng Pai'(醫學考證派) appeared by the influence of Yoshida Kouton and Kariya Ekisai(狩谷掖齋). 3. In the 'Kao Zheng Pai(考證派)'s theories and views the 'Yi Xue Kao Zheng Pai' did not look at medical scriptures like the "Huang Di Nei Jing"("黃帝內經") and did not do research on 'medical' related areas like acupuncture, the meridian and medicinal herbs. Since they were doctors that used medicine, they naturally were based on 'formulas'(方劑) and since their thoughts were based on the historical ideologies, they valued the "Shang Han Ja Bing Lun" which was revered as the 'ancestor of all formulas'(衆方之祖). 4. The lives of the important doctors of the 'Kao Zheng Pai' Meguro Dotaku(目黑道琢) Yamada Seichin(山田正珍), Yamada Kyoko(山田業廣), Mori Ritsi(森立之) Kitamura Naohara(喜多村直寬) are as follows. 1) Meguro Dotaku(目黑道琢 $1739{\sim}1798$) was born of lowly descent but, using his intelligence and knowledge, became a professor as a Shi Jing Yi(市井醫) and as a professor for 34 years at Ji Shou Guan(躋壽館) mastered the "Huang Di Nei Jing" after giving over 300 lectures. Since his pupil, Isawara Ken(伊澤蘭軒) taught the Lan Men Wu Zhe(蘭門五哲) and Shibue Chusai(澀江抽齋), Mori Ritsi(森立之), Okanishi Gentei(岡西玄亭), Kiyokawa Gendoh(淸川玄道) and Yamada Kyoko(山田業廣), Meguro Dotaku is considered the founder of the 'Yi Xue Kao Zheng Pai'. 2) The family of Yamada Seichin(山田正珍 $1749{\sim}1787$) had been medical officials in the Makufu(幕府) and the many books that his ancestors had left were the base of his art. Seichin learned from Shan Ben Bei Shan(山本北山), a 'Zhe Zhong Pai' scholar, and put his efforts into learning, teaching and researching the "Shang Han Lun"("傷寒論"). Living in a time between 'Gu Fang Pai'(古方派) member Nakanishi Goretada(中西惟忠) and 'Kao Zheng Pai' member Taki Motohiro(多紀元簡), he wrote 11 books, 2 of which express his thoughts and research clearly, the "Shang Han Lun Ji Cheng"("傷寒論集成") and "Shang Han Kao"("傷寒考"). His comparison of the 'six meridians'(3 yin, 3 yang) between the "Shang Han Lun" and the "Su Wen Re Lun"("素問 熱論") and his acknowledgement of the need and rationality of the concept of Yin-Yang and Deficient-Replete distinguishes him from the other 'Gu Fang Pai'. Also, his dissertation of the need for the concept doesn't use the theories of latter schools but uses the theory of the "Shang Han Lun" itself. He even researched the historical parts, such as terms like 'Shen Nong Chang Bai Cao'(神農嘗百草) and 'Cheng Qi Tang'(承氣湯). 3) The ancestor of Yamada Kyoko(山田業廣) was a court physician, and learned confucianism from Kao Zheng Pai's Ashikawa Genan(朝川善庵) and medicine from Isawa Ranken(伊澤蘭軒) and Taki Motokata(多紀元堅), and the secret to smallpox from Ikeda Keisui(池田京水). He later became a lecturer at the Edo Yi Xue Guan(醫學館) and was invited as the director to the Ji Zhong(濟衆) hospital. He also became the first owner of the Wen Zhi She(溫知社), whose main purpose was the revival of kampo, and launched the monthly magazine Wen Zi Yi Tan(溫知醫談). He also diagnosed and prescribed for the prince Ming Gong(明宮). His works include the "Jing Fang Bian"("經方辨"), "Shang Han Lun Si Ci"("傷寒論釋詞"), "Huang Zhao Zhu Jia Zhi Yan Ji Yao"("皇朝諸家治驗集要") and "Shang Han Ja Bing Lun Lei Juan"("傷寒雜病論類纂"). of these, the "Jing Fang Bian"("經方辨") states that the Shi Gao(石膏) used in the "Shang Han Lun" had three meanings-Fa Biao(發表), Qing Re(淸熱), Zi Yin(滋陰)-which were from 'symptoms', and first deducted the effects and then told of the reason. Another book, the "Jiu Zhe Tang Du Shu Ji"("九折堂讀書記") researched and translated the difficult parts of the "Shang Han Lun", "Jin Qui Yao Lue"("金匱要略"), "Qian Jin Fang"("千金方"), and "Wai Tai Mi Yao"("外臺秘要"). He usually analyzed the 'symptoms' of diseases but the composition, measurement, processing and application of medicine were all in the spectrum of 'analystic research' and 'researching analysis'. 4) The ancestors of Mori Ritsi(森立之 $1807{\sim}1885$) were warriors but he became a doctor by the will of his mother, and he learned from Shibue Chosai(澁江抽齋) and Isawaran Ken(伊澤蘭軒) and later became a pupil of Shou Gu Yi Zhai(狩谷掖齋), a historical research scholar. He then became a lecturer of medical herbs at the Yi Xue Guan, and later participated in the proofreading of "Yi Xin Fang"("醫心方") and with Chosai compiled the "Jing Ji Fang Gu Zhi"("經籍訪古志"). He visited the Chinese scholar Yang Shou Jing(楊守敬) in 1881 and exchanged books and ideas. Of his works, there are the collections(輯複本) of "Shen Nong Ben Cao Jing"("神農本草經") and "You Xiang Yi Hwa"("遊相醫話") and the records, notes, poems, and diaries such as "Zhi Yuan Man Lu"("枳園漫錄") and "Zhi Yuan Sui Bi"(枳園隨筆) that were not published. His thoughts were that in restoring the "Shen Nong Ben Cao Jing", "the herb to the doctor is like the "Shuo Wen Jie Zi"(說文解字) to the scholar", and he tried to restore the ancient herbal text using knowledge of medicine and investigation(考據), Also with Chosai he compiled the "Jing Ji Fang Gu Zhi"("經籍訪古志") using knowledge of ancient text. Ritzi left works on pure investigation, paid much attention to social problems, and through 12 years of poverty treated all people and animals in all branches of medicine, so he is called a 'half confucianist half doctor'(半儒半醫). 5) Kitamurana Ohira(喜多村直寬, $1804{\sim}1876$) learned scriptures and ancient texts from confucian scholar Asaka Gonsai(安積艮齋), and learned medicine from his father Huai Yaun(槐園), He became a teacher in the Yi Xue Guan in his middle ages, and to repay his country, he printed 266 volumes of "Yi Fang Lei Ju"("醫方類聚") and 1000 volumes of "Tai Ping Yu Lan"("太平禦覽") and devoted it to his country to be spread. His works are about 40 volumes including "Jin Qui Yao Lue Shu Yi"("金匱要略疏義") and "Lao Yi Zhi Yan"(老醫巵言) but most of them are researches on the "Shang Han Za Bing Lun". In his "Shang Han Lun Shu Yi"("傷寒論疏義") he shows the concept of the six meridians through the Yin-Yang, Superficial or internal, cold or hot, deficient or replete state of diseases, but did not match the names with the six meridians of the meridian theory, and this has something in common with the research based on the confucianism of Song(宋儒). In clinical treatment he was positive toward old and new methods and also the experience of civilians, but was negative toward western medicine. 6) The ancestor of the Taki family Tanbano Yasuyori(丹波康賴 $912{\sim}955$) became a Yi Bo Shi(醫博士) by his medical skills and compiled the "Yi Xin Fang"("醫心方"). His first son Tanbano Shigeaki(丹波重明) inherited the Shi Yao Yuan(施藥院) and the third son Tanbano Masatada(丹波雅忠) inherited the Dian You Tou(典藥頭). Masatada's descendents succeeded him for 25 generations until the family name was changed to Jin Bao(金保) and five generations later it was changed again to Duo Ji(多紀). The research scholar Taki Motohiro was in the third generation after the last name was changed to Taki, and his family kept an important part in the line of medical officers in Japan. Taki Motohiro(多紀元簡 $1755{\sim}1810$) was a teacher in the Yi Xue Guan where his father was residing, and became the physician for the general Jia Qi(家齊). He had a short temper and was not good at getting on in the world, and went against the will of the king and was banished from Ao Yi Shi(奧醫師). His most famous works, the "Shang Han Lun Ji Yi"("傷寒論輯義") and "Jin Qui Yao Lue Ji Yi"("金匱要略輯義") are the work of 20 years of collecting the theories of many schools and discussing, and is one of the most famous books on the "Shang Han Lun" in Japan. "Yi Sheng"("醫勝") is a collection of essays on research. Also there are the "Su Wen Shi"(素問識), "Ling Shu Shi"("靈樞識"), and the "Guan Ju Fang Yao Bu"("觀聚方要補"). Taki Motohiro(多紀元簡)'s position was succeeded by his third son Yuan Yin(元胤 $1789{\sim}1827$), and his works include works of research such as "Nan Jing Shu Jeng"(難經疏證), "Ti Ya"("體雅"), "Yao Ya"("藥雅"), "Ji Ya"(疾雅), "Ming Yi Gong An"(名醫公案), and "Yi Ji Kao"(醫籍考). The "Yi Ji Kao" is 80 volumes in length and lists about 3000 books on medicine in China before the Qing Dao Guang(道光), and under each title are the origin, number of volumes, state of existence, and, if possible, the preface, Ba Yu(跋語) and biography of the author. The younger sibling of Yuan Yin(元胤 $1789{\sim}1827$), Yuan Jian(元堅 $1795{\sim}1857$) expounded ancient writings at the Yi Xue Guan only after he reached middle age, was chosen for the Ao Yi Shi(奧醫師) and later became a Fa Yan(法眼), Fa Yin(法印) and Yu Chi(禦匙). He left about 15 texts, including "Su Wen Shao Shi"("素問紹識"), "Yi Xin Fang"("醫心方"), published in school, "Za Bing Guang Yao"("雜病廣要"), "Shang Han Guang Yao"("傷寒廣要"), and "Zhen Fu Yao Jue"("診腹要訣"). On the Taki family's founding and working of the Yi Xue Guan Yasuka Doumei(矢數道明) said they were "the people who took the initiative in Edo era kampo medicine" and evaluated their deeds in the fields of 'research of ancient text', the founding of Ji Shou Guan(躋壽館) and medical education', 'publication business', 'writing of medical text'. 5. The doctors of the 'Kao Zheng Pai' based their operations on the Edo Yi Xue Guan, and made groups with people with similar ideas to them, making a relationship 'net'. For example the three families of Duo Ji(多紀), Tang Chuan(湯川) and Xi Duo Cun(喜多村) married and adopted with and from each other and made prefaces and epitaphs for each other. Thus, the Taki family, the state science of the Makufu, the tendency of thinking, one's own interests and glory, one's own knowledge, the need of the society all played a role in the development of kampo medicine in the 18th and 19th century.

    • PDF

    The Research on Recommender for New Customers Using Collaborative Filtering and Social Network Analysis (협력필터링과 사회연결망을 이용한 신규고객 추천방법에 대한 연구)

    • Shin, Chang-Hoon;Lee, Ji-Won;Yang, Han-Na;Choi, Il Young
      • Journal of Intelligence and Information Systems
      • /
      • v.18 no.4
      • /
      • pp.19-42
      • /
      • 2012
    • Consumer consumption patterns are shifting rapidly as buyers migrate from offline markets to e-commerce routes, such as shopping channels on TV and internet shopping malls. In the offline markets consumers go shopping, see the shopping items, and choose from them. Recently consumers tend towards buying at shopping sites free from time and place. However, as e-commerce markets continue to expand, customers are complaining that it is becoming a bigger hassle to shop online. In the online shopping, shoppers have very limited information on the products. The delivered products can be different from what they have wanted. This case results to purchase cancellation. Because these things happen frequently, they are likely to refer to the consumer reviews and companies should be concerned about consumer's voice. E-commerce is a very important marketing tool for suppliers. It can recommend products to customers and connect them directly with suppliers with just a click of a button. The recommender system is being studied in various ways. Some of the more prominent ones include recommendation based on best-seller and demographics, contents filtering, and collaborative filtering. However, these systems all share two weaknesses : they cannot recommend products to consumers on a personal level, and they cannot recommend products to new consumers with no buying history. To fix these problems, we can use the information which has been collected from the questionnaires about their demographics and preference ratings. But, consumers feel these questionnaires are a burden and are unlikely to provide correct information. This study investigates combining collaborative filtering with the centrality of social network analysis. This centrality measure provides the information to infer the preference of new consumers from the shopping history of existing and previous ones. While the past researches had focused on the existing consumers with similar shopping patterns, this study tried to improve the accuracy of recommendation with all shopping information, which included not only similar shopping patterns but also dissimilar ones. Data used in this study, Movie Lens' data, was made by Group Lens research Project Team at University of Minnesota to recommend movies with a collaborative filtering technique. This data was built from the questionnaires of 943 respondents which gave the information on the preference ratings on 1,684 movies. Total data of 100,000 was organized by time, with initial data of 50,000 being existing customers and the latter 50,000 being new customers. The proposed recommender system consists of three systems : [+] group recommender system, [-] group recommender system, and integrated recommender system. [+] group recommender system looks at customers with similar buying patterns as 'neighbors', whereas [-] group recommender system looks at customers with opposite buying patterns as 'contraries'. Integrated recommender system uses both of the aforementioned recommender systems to recommend movies that both recommender systems pick. The study of three systems allows us to find the most suitable recommender system that will optimize accuracy and customer satisfaction. Our analysis showed that integrated recommender system is the best solution among the three systems studied, followed by [-] group recommended system and [+] group recommender system. This result conforms to the intuition that the accuracy of recommendation can be improved using all the relevant information. We provided contour maps and graphs to easily compare the accuracy of each recommender system. Although we saw improvement on accuracy with the integrated recommender system, we must remember that this research is based on static data with no live customers. In other words, consumers did not see the movies actually recommended from the system. Also, this recommendation system may not work well with products other than movies. Thus, it is important to note that recommendation systems need particular calibration for specific product/customer types.


    (34141) Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon
    Copyright (C) KISTI. All Rights Reserved.