• Title/Summary/Keyword: Integration Devices

Search Result 513, Processing Time 0.025 seconds

The Technology Trend of Interconnection Network for High Performance Computing (고성능 컴퓨팅을 위한 인터커넥션 네트워크 기술 동향)

  • Cho, Hyeyoung;Jun, Tae Joon;Han, Jiyong
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.8
    • /
    • pp.9-15
    • /
    • 2017
  • With the development of semiconductor integration technology, central processing units and storage devices have been miniaturized and performance has been rapidly developed, interconnection network technology is becoming a more important factor in terms of the performance of high performance computing system. In this paper, we analyze the trend of interconnection network technology used in high performance computing. Interconnect technology, which is the most widely used in the Supercomputer Top 500(2017. 06.), is an Infiniband. Recently, Ethernet is the second highest share after InfiniBand due to the emergence of 40/100Gbps Gigabit Ethernet technology. Gigabit Ethernet, where latency performance is lower than InfiniBand, is preferred in cost-effective medium-sized data centers. In addition, top-end HPC systems that demand high performance are devoting themselves from Ethernet and InfiniBand technologies and are attempting to maximize system performance by introducing their own interconnect networks. In the future, high-performance interconnects are expected to utilize silicon-based optical communication technology to exchange data with light.

Availability of Mobile Art in Smartphone Environment of Augmented Reality Content Industrial Technology (증강현실 콘텐츠 산업기술의 스마트폰 환경 모바일 아트 활용 가능성)

  • Kim, Hee-Young;Shin, Chang-Ok
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.5
    • /
    • pp.48-57
    • /
    • 2013
  • Smartphones provide users with environment for communication and sharing information and at the same time play an important role of mobile technology and mobile art development. Smartphone technology-related researches are being accelerated especially with the advent of mobile Augmented Reality(AR) age, but the studies on user participation that is essential for AR content industry were insufficient. In that regard, the assistance from mobile art area that has already developed these characteristics is essential. Thus, this article is to classify mobile art that has not been studied a lot domestically into feature phone usage and smartphone usage and to analyze each example case with the three most used methods. The usage of feature phones which use the sound and images of mobile devices can be divided into three: installation and performing methods, single channel video art method and five senses communication method. On the other hand, the usage of smartphones that use sensors, cameras, GPS and AR can be divided into location-based AR, marker-based AR and markerless AR. Also, as a result of examining mobile AR content utilization technology by industries, combined methods are utilized; tourism and game-related industries use location-based AR, education and medicine-related industries use marker-based AR, and shopping-related industries use markerless AR. The development of AR content industry is expected to be accelerated with mobile art that makes use of combined technology method and constant communication method through active participation of users. The future development direction of mobile AR industry is predicted to have minimized HMD, integration of hologram technology and artificial intelligence and make the most of big data and social network so that we could overcome the technological limitation of AR.

The Study on Centralization & Electronic for Maintenance Efficiency of Ground Signaling System (지상신호설비의 유지보수 효율화를 위한 집중화 및 전자화 연구)

  • Baek, Jong-Hyen;Kim, Yong-Kyu;Lee, Kang-Mi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2983-2988
    • /
    • 2010
  • The train control system used in Gyeongbu-line is classified in ATC, IXL and CTC. Domestic railway signaling systems are being developed by electrification. In these systems the electrification of interlocking reaches 57% and the safety equipments of railway crossings in trackside devices have completed their development into an integrated system. Block systems of all the existing sections have not yet electrified and integrated so that they need a number of complement in terms of construction and maintenance. For ABS currently used in existing domestic lines, and LEU being installed in Gyeongbu and Honam lines, although a train is controlled by the signaling information of the same train in the same location, the system is separately installed so that the same information is separately divided and transmitted at the each distinct system. Therefore, in the conventional ABS and LEU, there are a lot of duplicate installed compartments such as lamp detection and a power supply unit. Hence, we have a lot of problems: for maintenance, a lot of manpower and costs need to be invested and the overall manufacturing costs get higher, as well as the construction costs by duplicate. Therefore, this paper suggest design to develop an integrated electronic Block Control Unit by the integration of the currently used ABS, and communication and electronic technology. We are to monitor and manage the block systems in the corresponding station by integrating. And we are to transmit information together with LEU, which is an ATS wayside transmitter.

Effect of Organic Solvent-Modification on the Electrical Characteristics of the PCBM Thin-Film Transistors on Plastic substrate (플라스틱 기판상에 제작된 PCBM 박막 트랜지스터의 전기적 특성에 대한 유기 용매 최적화의 효과에 대한 연구)

  • Hyung, Gun-Woo;Lee, Ho-Won;Koo, Ja-Ryong;Lee, Seok-Jae;Kim, Young-Kwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.199-204
    • /
    • 2012
  • Organic thin-film transistors (OTFTs) have received considerable attention because their potential applications for nano-scale thin-film structures have been widely researched for large-scale integration industries, such as semiconductors and displays. However, research in developing n-type materials and devices has been relatively shortage than developing p-type materials. Therefore, we report on the fabrication of top-contact [6,6]-phenyl-C61-butyricacidmethylester (PCBM) TFTs by using three different solvent, o-dichlorobenzene, toluene and chloroform. An appropriate choice of solvent shows that the electrical characteristics of PCBM TFTs can be improved. Moreover, our PCBM TFTs with the cross-linked Poly(4-vinylphenol) dielectric layer exhibits the most pronounced improvements in terms of the field-effect mobility (${\sim}0.034cm^2/Vs$) and the on/off current ratio (${\sim}1.3{\times}10^5$) for our results. From these results, it can be concluded that solvent-modification of an organic semiconductor in PCBM TFTs is useful and can be extended to further investigations on the PCBM TFTs having polymeric gate dielectrics. It is expected that process optimizations using solution-processing of organic semiconductor materials will allow the development of the n-type organic TFTs for low-cost electronics and various electronic applications.

An Advanced User-friendly Wireless Smart System for Vehicle Safety Monitoring and Accident Prevention (차량 안전 모니터링 및 사고 예방을 위한 친사용자 환경의 첨단 무선 스마트 시스템)

  • Oh, Se-Bin;Chung, Yeon-Ho;Kim, Jong-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.1898-1905
    • /
    • 2012
  • This paper presents an On-board Smart Device (OSD) for moving vehicle, based on a smooth integration of Android-based devices and a Micro-control Unit (MCU). The MCU is used for the acquisition and transmission of various vehicle-borne data. The OSD has threefold functions: Record, Report and Alarm. Based on these RRA functions, the OSD is basically a safety and convenience oriented smart device, where it facilitates alert services such as accident report and rescue as well as alarm for the status of vehicle. In addition, voice activated interface is developed for the convenience of users. Vehicle data can also be uploaded to a remote server for further access and data manipulation. Therefore, unlike conventional blackboxes, the developed OSD lends itself to a user-friendly smart device for vehicle safety: It basically stores monitoring images in driving plus vehicle data collection. Also, it reports on accident and enables subsequent rescue operation. The developed OSD can thus be considered an essential safety smart device equipped with comprehensive wireless data service, image transfer and voice activated interface.

Joint Uplink/Downlink Co-Opportunistic Scheduling Technique in WLANs (무선랜 환경에서 협동 상향/하향 링크 기회적 스케줄링 기법)

  • Yoo, Joon;Kim, Chong-Kwon
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.6
    • /
    • pp.514-524
    • /
    • 2007
  • Recent advances in the speed of multi-rate wireless local area networks (WLANs) and the proliferation of WLAN devices have made rate adaptive, opportunistic scheduling critical for throughput optimization. As WLAN traffic evolves to be more symmetric due to the emerging new applications such as VoWLAN, collaborative download, and peer-to-peer file sharing, opportunistic scheduling at the downlink becomes insufficient for optimized utilization of the single shared wireless channel. However, opportunistic scheduling on the uplink of a WLAN is challenging because wireless channel condition is dynamic and asymmetric. Each transmitting client has to probe the access point to maintain the updated channel conditions at the access point. Moreover, the scheduling decisions must be coordinated at all clients for consistency. This paper presents JUDS, a joint uplink/downlink opportunistic scheduling for WLANs. Through synergistic integration of both the uplink and the downlink scheduling, JUDS maximizes channel diversity at significantly reduced scheduling overhead. It also enforces fair channel sharing between the downlink and uplink traffic. Through extensive QualNet simulations, we show that JUDS improves the overall throughput by up to 127% and achieves close-to-perfect fairness between uplink and downlink traffic.

Comparison of growth and properties of GaN with various AlN buffer layers on Si (111) substrate (Si (111) 기판 위에 다양한 AIN 완충층을 이용한 GaN 성장과 특성 비교)

  • 신희연;이정욱;정성훈;유지범;양철웅
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.1
    • /
    • pp.50-58
    • /
    • 2002
  • The growth of GaN films on Si substrate has many advantages in that Si is less expensive than sapphire substrate and that integration of GaN-based devices with Si substrate is easier The difference of lattice constant and thermal expansion coefficient between GaN and Si is larger than those between GaN and sapphire. However, which results in many defects into the grown GaN. In order to obtain high duality GaN films on Si substrate, we need to reduce defects using the buffer layer such as AlN. In this study, we prepared three types of AlN buffer layer with various crystallinity on Si (111) substrate using MOCVD, Sputtering and MOMBE methods. GaN was grown by MOCVD on three types of AlN/Si substrate. Using TEM and XRD, we carried out comparative investigation of growth and properties of GaN deposited on the various AlN buffers by characterizing lattice coherency, crystallinity, growth orientation and defects formed (voids, stacking faults, dislocations, etc). It is found that the crystallinity of AlN buffer layer has strong effects on growth of GaN. The AlN buffer layers grown by MOCVD and MOMBE showed the reduction of out-of-plane misorientation of GaN at the initial growth stage.

Validating the Structural Behavior and Response of Burj Khalifa: Synopsis of the Full Scale Structural Health Monitoring Programs

  • Abdelrazaq, Ahmad
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.1
    • /
    • pp.37-51
    • /
    • 2012
  • New generation of tall and complex buildings systems are now introduced that are reflective of the latest development in materials, design, sustainability, construction, and IT technologies. While the complexity in design is being overcome by the availability and advances in structural analysis tools and readily advanced software, the design of these buildings are still reliant on minimum code requirements that yet to be validated in full scale. The involvement of the author in the design and construction planning of Burj Khalifa since its inception until its completion prompted the author to conceptually develop an extensive survey and real-time structural health monitoring program to validate all the fundamental assumptions mad for the design and construction planning of the tower. The Burj Khalifa Project is the tallest structure ever built by man; the tower is 828 meters tall and comprises of 162 floors above grade and 3 basement levels. Early integration of aerodynamic shaping and wind engineering played a major role in the architectural massing and design of this multi-use tower, where mitigating and taming the dynamic wind effects was one of the most important design criteria established at the onset of the project design. Understanding the structural and foundation system behaviors of the tower are the key fundamental drivers for the development and execution of a state-of-the-art survey and structural health monitoring (SHM) programs. Therefore, the focus of this paper is to discuss the execution of the survey and real-time structural health monitoring programs to confirm the structural behavioral response of the tower during construction stage and during its service life; the monitoring programs included 1) monitoring the tower's foundation system, 2) monitoring the foundation settlement, 3) measuring the strains of the tower vertical elements, 4) measuring the wall and column vertical shortening due to elastic, shrinkage and creep effects, 5) measuring the lateral displacement of the tower under its own gravity loads (including asymmetrical effects) resulting from immediate elastic and long term creep effects, 6) measuring the building lateral movements and dynamic characteristic in real time during construction, 7) measuring the building displacements, accelerations, dynamic characteristics, and structural behavior in real time under building permanent conditions, 8) and monitoring the Pinnacle dynamic behavior and fatigue characteristics. This extensive SHM program has resulted in extensive insight into the structural response of the tower, allowed control the construction process, allowed for the evaluation of the structural response in effective and immediate manner and it allowed for immediate correlation between the measured and the predicted behavior. The survey and SHM programs developed for Burj Khalifa will with no doubt pioneer the use of new survey techniques and the execution of new SHM program concepts as part of the fundamental design of building structures. Moreover, this survey and SHM programs will be benchmarked as a model for the development of future generation of SHM programs for all critical and essential facilities, however, but with much improved devices and technologies, which are now being considered by the author for another tall and complex building development, that is presently under construction.

Design and Fabrication of 10 GHz Substrate Integrated Waveguide Band Pass Filter Based on EM Simulation (10 GHz 대역 기판 집적 도파관 대역 통과 여파기의 EM 시뮬레이션을 이용한 설계 및 제작)

  • Lee, Won-Hee;Oh, Hyun-Seok;Jeong, Hae-Chang;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.2
    • /
    • pp.99-109
    • /
    • 2010
  • Recently, SIW(Substrate Integrated Waveguide) is intensively studied because of its high Q and easy integration with other devices. However, lacks of analytic characterization of SIW makes it difficult an accurate design of a SIW filter along the conventional filter design method. In this paper, two kinds of a three-stage 10 GHz SIW bandpass filter of fractional bandwidth 10% are designed using 3D EM simulator HFSS based on the recently presented EM filter design method. Two types of a modified CPW to SIW transition is proposed and employed as a SIW to microstrip transition necessary for measurement. The transitions provide an easy measurement with commercial test fixture by TRL calibration. The two proposed transitions are included in the SIW filters. The fabricated filters shows the center frequency of 10 GHz, fractional bandwidth 10%, a return loss of about 12 dB, and insertion loss of about 0.8 dB.

Design and fabrication of the MMIC frequency doubler for 29 GHz local oscillator application (29GHz 국부 발진 신호용 MMIC 주파수 체배기의 설계 및 제작)

  • Kim, Jin-Sung;Lee, Seong-Dae;Lee, Bok-Hyoung;Kim, Sung-Chan;Sul, Woo-Suk;Lim, Byeong-Ok;Kim, Sam-Dong;Park, Hyun-Chang;Park, Hyung-Moo;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.11
    • /
    • pp.63-70
    • /
    • 2001
  • We demonstrate the MMIC (monolithic microwave integrated circuit) frequency doublers generating stable and low-cost 29 GHz local oscillator signals from 14.5 GHz input signals. These devices were designed and fabricated by using the M MIC integration process of $0.1\;{\mu}m$ gate-length PHEMTs (pseudomorphic high electron mobility transistors) and passive components. The measurements showed S11 or -9.2 dB at 145 GHz, S22 of -18.6 dG at 29 GHz and a minimum conversion loss of 18.2 dB at 14.5 GHz with an input power or 6 dBm. Fundamental signal of 14.5 GHz were suppressed below 15.2 dBe compared to the second harmonic signal at the output port, and the isolation characteristics of fundamental signal between the input and the output port were maintained above :i0 dB in the frequency range 10.5 GHz to 18.5 GHz. The chip size of the fabricated MMIC frequency doubler is $1.5{\times}2.2\;mm^2$.

  • PDF