• Title/Summary/Keyword: Integration Cell

Search Result 370, Processing Time 0.032 seconds

A Study on Building Identification from the Three-dimensional Point Cloud by using Monte Carlo Integration Method (몬테카를로 적분을 통한 3차원 점군의 건물 식별기법 연구)

  • YI, Chaeyeon;AN, Seung-Man
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.16-41
    • /
    • 2020
  • Geospatial input setting to represent the reality of spatial distribution or quantitative property within model has become a major interest in earth system simulation. Many studies showed the variation of grid resolution could lead to drastic changes of spatial model results because of insufficient surface property estimations. Hence, in this paper, the authors proposed Monte Carlo Integration (MCI) to apply spatial probability (SP) in a spatial-sampling framework using a three-dimensional point cloud (3DPC) to keep the optimized spatial distribution and area/volume property of buildings in urban area. Three different decision rule based building identification results were compared : SP threshold, cell size, and 3DPC density. Results shows the identified building area property tend to increase according to the spatial sampling grid area enlargement. Hence, areal building property manipulation in the sampling frameworks by using decision rules is strongly recommended to increase reliability of geospatial modeling and analysis results. Proposed method will support the modeling needs to keep quantitative building properties in both finer and coarser grids.

Power System Development of Unmanned Aerial Vehicle using Proton Exchange Membrane Fuel Cell (고분자 전해질 연료전지를 이용한 무인비행체 동력시스템 설계)

  • Jee, Yeong-Kwang;Sohn, Young-Jun;Park, Gu-Gon;Kim, Chang-Soo;Choi, Yu-Song;Cho, Sung-Baek
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.3
    • /
    • pp.250-255
    • /
    • 2012
  • In this paper, the development and performance analysis of a fuel cell-powered unmanned aerial vehicle is described. A fuel cell system featuring 1 kW proton exchange membrane fuel cell combined with a highly pressurized fuel supply system is proposed. For the higher fuel consumption efficiency and simplification of overall system, dead-end type operation is chosen and each individual system such as purge system, fuel supply system, cooling system is developed. Considering that fluctuation of exterior load makes it hard to stabilize fuel cell performance, the power management system is designed using a fuel cell and lithium-ion battery hybrid system. After integration of individual system, the performance of unmanned aerial vehicle is analyzed using data from flight and laboratory test. In the result, overall system was properly operated but for more duration of flight, research on weight lighting and improvement of fuel efficiency is needed to be progressed.

Particle Charging and Collection in Two-Stage, Parallel-Plate Electrostatic Precipitators (2단 평행판 정전식 집진기에서의 입자하전 및 포집)

  • 오명도;유경훈;이준식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.432-445
    • /
    • 1994
  • From a theoretical analysis point of view, the 2-stage precipitator is decomposed into two units: charging cell and collecting cell. Collection efficiency predictions of the two-stage parallel-plate electrostatic precipitator have been performed theoretically incorporating with the charging and the collecting cells. Particle trajectorise passing the charging cell have been modeled as a simple one. Particle charge distribution at the outlet of the charging cell is calculated through integration of the present unipolar combined charging rate along the entire particle trajectory, and average charge of particles at the outlet of the charging cell is obtained from the particle charge distribution. As for the collecting cell, the diminution of particle concentration along the longitudinal direction of the collecting cell is investigated considering the conventional Deutsch's theory and the laminar theory. One should note that the collection efficiency formula derived is based on monodisperse aerosols. It has been confirmed through the analysis that predictions of particle charge by applying White's unipolar diffusion charging theory overpredict actual cases in the continuum regime, while predictions by Fuch's unipolar diffusion charging theory indicate the reasonable result in the same regime. Theoretical predictions of collection efficiency are also compared with the available experimental results. Comparisons show that the experimental results are consistently located in the collection efficiency region bounded by the two limits, the Deutsch and the laminar collection efficiencies. Finally design parameters of the 2-stage electrostatic precipitator have been investigated systematically through the one-variable-at-a-time method in terms of collection efficiency. Applied voltages on the corona wire of the charging cell and the plate of the collecting cell, and the average air velocity have been selected as the design parameters.

Design of a gate driver driving active balancing circuit for BMSs. (BMS용 능동밸런싱 회로 소자 구동용 게이트 구동 칩 설계)

  • Kim, Younghee;Jin, Hongzhou;Ha, Yoongyu;Ha, Panbong;Baek, Juwon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.732-741
    • /
    • 2018
  • In order to maximize the usable capacity of a BMS (battery management system) that uses several battery cells connected in series, a cell balancing technique that equips each cell with the same voltage is needed. In the active cell balancing circuit using a multi-winding transformer, a balancing circuit that transfers energy directly to the cell (cell-to-cell) is composed of a PMOS switch and a gate driving chip for driving the NMOS switch. The TLP2748 photocoupler and the TLP2745 photocoupler are required, resulting in increased cost and reduced integration. In this paper, instead of driving PMOS and NMOS switching devices by using photocoupler, we proposed 70V BCD process based PMOS gate driving circuit, NMOS gate driving circuit, PMOS gate driving circuit and NMOS gate driving circuit with improved switching time. ${\Delta}t$ of the PMOS gate drive switch with improved switching time was 8.9 ns and ${\Delta}t$ of the NMOS gate drive switch was 9.9 ns.

Homogeneity of XEN Cells Is Critical for Generation of Chemically Induced Pluripotent Stem Cells

  • Dahee Jeong;Yukyeong Lee;Seung-Won Lee;Seokbeom Ham;Minseong Lee;Na Young Choi;Guangming Wu;Hans R. Scholer;Kinarm Ko
    • Molecules and Cells
    • /
    • v.46 no.4
    • /
    • pp.209-218
    • /
    • 2023
  • In induced pluripotent stem cells (iPSCs), pluripotency is induced artificially by introducing the transcription factors Oct4, Sox2, Klf4, and c-Myc. When a transgene is introduced using a viral vector, the transgene may be integrated into the host genome and cause a mutation and cancer. No integration occurs when an episomal vector is used, but this method has a limitation in that remnants of the virus or vector remain in the cell, which limits the use of such iPSCs in therapeutic applications. Chemical reprogramming, which relies on treatment with small-molecule compounds to induce pluripotency, can overcome this problem. In this method, reprogramming is induced according to the gene expression pattern of extra-embryonic endoderm (XEN) cells, which are used as an intermediate stage in pluripotency induction. Therefore, iPSCs can be induced only from established XEN cells. We induced XEN cells using small molecules that modulate a signaling pathway and affect epigenetic modifications, and devised a culture method which can produce homogeneous XEN cells. At least 4 passages were required to establish morphologically homogeneous chemically induced XEN (CiXEN) cells, whose properties were similar to those of XEN cells, as revealed through cellular and molecular characterization. Chemically iPSCs derived from CiXEN cells showed characteristics similar to those of mouse embryonic stem cells. Our results show that the homogeneity of CiXEN cells is critical for the efficient induction of pluripotency by chemicals.

The Role of High-throughput Transcriptome Analysis in Metabolic Engineering

  • Jewett, Michael C.;Oliveira, Ana Paula;Patil, Kiran Raosaheb;Nielsen, Jens
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.5
    • /
    • pp.385-399
    • /
    • 2005
  • The phenotypic response of a cell results from a well orchestrated web of complex interactions which propagate from the genetic architecture through the metabolic flux network. To rationally design cell factories which carry out specific functional objectives by controlling this hierarchical system is a challenge. Transcriptome analysis, the most mature high-throughput measurement technology, has been readily applied In strain improvement programs in an attempt to Identify genes involved in expressing a given phenotype. Unfortunately, while differentially expressed genes may provide targets for metabolic engineering, phenotypic responses are often not directly linked to transcriptional patterns, This limits the application of genome-wide transcriptional analysis for the design of cell factories. However, improved tools for integrating transcriptional data with other high-throughput measurements and known biological interactions are emerging. These tools hold significant promise for providing the framework to comprehensively dissect the regulatory mechanisms that identify the cellular control mechanisms and lead to more effective strategies to rewire the cellular control elements for metabolic engineering.

From the Sequence to Cell Modeling: Comprehensive Functional Genomics in Escherichia coli

  • Mori, Hirotada
    • BMB Reports
    • /
    • v.37 no.1
    • /
    • pp.83-92
    • /
    • 2004
  • As a result of the enormous amount of information that has been collected with E. coli over the past half century (e.g. genome sequence, mutant phenotypes, metabolic and regulatory networks, etc.), we now have detailed knowledge about gene regulation, protein activity, several hundred enzyme reactions, metabolic pathways, macromolecular machines, and regulatory interactions for this model organism. However, understanding how all these processes interact to form a living cell will require further characterization, quantification, data integration, and mathematical modeling, systems biology. No organism can rival E. coli with respect to the amount of available basic information and experimental tractability for the technologies needed for this undertaking. A focused, systematic effort to understand the E. coli cell will accelerate the development of new post-genomic technologies, including both experimental and computational tools. It will also lead to new technologies that will be applicable to other organisms, from microbes to plants, animals, and humans. E. coli is not only the best studied free-living model organism, but is also an extensively used microbe for industrial applications, especially for the production of small molecules of interest. It is an excellent representative of Gram-negative commensal bacteria. E. coli may represent a perfect model organism for systems biology that is aimed at elucidating both its free-living and commensal life-styles, which should open the door to whole-cell modeling and simulation.

The policy study on the power grid operation strategy of new and renewable energy combined generation system (도서지역의 신재생에너지복합발전 전력계통 운영방안에 관한 정책연구)

  • Kim, Eui Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.109.1-109.1
    • /
    • 2011
  • KEPCO was operating power plants with diesel generators in 49 islands including Baekryeong-Do, and the generation capacity was about 66 MW in 2008. The cost of fuel is increasing by the international oil price inflation and continuous rise of oil price is predicted. For the stabilizing of electric power supply to the separate islands, renewable energy and fuel cell systems were considered. Hydrogen is made using renewable energy such as wind power and solar energy, and then a fuel cell system generates electricity with the stored hydrogen. Though the system efficiency is low, it is treated as the only way to secure the stable electric supply using renewable energy at this present. The analytic hierarchy process was used to select suitable candidate island for the system installation and 5 islands including Ulleung-Do were selected. Economic evaluation for the system composed of a kerosene generator, a wind power, an electrolysis, and a fuel cell system was conducted with levelized generation cost based on present value methode. As the result, the necessity of renewable energy combined generation system and micro grid composition in the candidated islands was confirmed. Henceforth, the development of an integration technology which connects micro grid to the total power grid will be needed.

  • PDF

Applications to Thin Film Processing to Solid Oxide Fuel Cells

  • Kim, Eui-Hyun;Hwang, Hee-Su;Ko, Myeong-Hee;Hwang, Jin-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.696-696
    • /
    • 2013
  • Solid Oxide Fuel Cells (SOFCs) have been gaining academic/industrial attention due to the unique high efficiency and minimized pollution emission. SOFCs are an electrochemical system composed of dissimilar materials which operates at relatively high temperatures ranging from 800 to 1000oC. The cell performance is critically dependent on the inherent properties and integration processing of the constituents, a cathode, an electrolyte, an anode, and an interconnect in addition to the sealing materials. In particular, the gas transport, ion transport, and by-product removal also affect the cell performance, in terms of open cell voltages, and cell powers. In particular, the polarization of cathode materials is one of the main sources which affects the overall function in SOFCs. Up to now, there have been studies on the materials design and microstructure design of the component materials. The current work reports the effect of thin film processing on cathode polarization in solid oxide fuel cells. The polarization issues are discussed in terms of dc- and ac-based electrical characterizations. The potential of thin film processing to the applicability to SOFCs is discussed.

  • PDF

Cardiac Regeneration with Human Pluripotent Stem Cell-Derived Cardiomyocytes

  • Park, Misun;Yoon, Young-sup
    • Korean Circulation Journal
    • /
    • v.48 no.11
    • /
    • pp.974-988
    • /
    • 2018
  • Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), which are collectively called pluripotent stem cells (PSCs), have emerged as a promising source for regenerative medicine. Particularly, human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have shown robust potential for regenerating injured heart. Over the past two decades, protocols to differentiate hPSCs into CMs at high efficiency have been developed, opening the door for clinical application. Studies further demonstrated therapeutic effects of hPSC-CMs in small and large animal models and the underlying mechanisms of cardiac repair. However, gaps remain in explanations of the therapeutic effects of engrafted hPSC-CMs. In addition, bioengineering technologies improved survival and therapeutic effects of hPSC-CMs in vivo. While most of the original concerns associated with the use of hPSCs have been addressed, several issues remain to be resolved such as immaturity of transplanted cells, lack of electrical integration leading to arrhythmogenic risk, and tumorigenicity. Cell therapy with hPSC-CMs has shown great potential for biological therapy of injured heart; however, more studies are needed to ensure the therapeutic effects, underlying mechanisms, and safety, before this technology can be applied clinically.