• Title/Summary/Keyword: Integrated power systems

Search Result 683, Processing Time 0.027 seconds

An Optimal Random Carrier Pulse Width Modulation Technique Based on a Genetic Algorithm

  • Xu, Jie;Nie, Zi-Ling;Zhu, Jun-Jie
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.380-388
    • /
    • 2017
  • Since the carrier sequence is not reproducible in a period of the random carrier pulse width modulation (RCPWM) and a higher harmonic spectrum amplitude is likely to affect the quality of the power supply. In addition, electromagnetic interference (EMI) and mechanical vibration will appear. To solve these problems, this paper has proposed an optimal RCPWM based on a genetic algorithm (GA). In the optimal modulation, the range of the random carrier frequency is taken as a constraint and the reciprocal of the maximum harmonic spectrum amplitude is used as a fitness function to decrease the EMI and mechanical vibration caused by the harmonics concentrated at the carrier frequency and its multiples. Since the problems of the hardware make it difficult to use in practical engineering, this paper has presented a hardware system. Simulations and experiments show that the RCPWM is effective. Studies show that the harmonic spectrum is distributed more uniformly in the frequency domain and that there is no obvious peak in the wave spectra. The proposed method is of great value to research on RCPWM and integrated power systems (IPS).

Evaluation of a Self-Adaptive Voltage Control Scheme for Low-Power FPGAs

  • Ishihara, Shota;Xia, Zhengfan;Hariyama, Masanori;Kameyama, Michitaka
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.3
    • /
    • pp.165-175
    • /
    • 2010
  • This paper presents a fine-grain supply-voltage-control scheme for low-power FPGAs. The proposed supply-voltage-control scheme detects the critical path in real time with small overheads by exploiting features of asynchronous architectures. In an FPGA based on the proposed supply-voltage-control scheme, logic blocks on the sub-critical path are autonomously switched to a lower supply voltage to reduce the power consumption without system performance degradation. Moreover, in order to reduce the overheads of level shifters used at the power domain interface, a look-up-table without level shifters is employed. Because of the small overheads of the proposed supply-voltage-control scheme and the power domain interface, the granularity size of the power domain in the proposed FPGA is as fine as a single four-input logic block. The proposed FPGA is fabricated using the e-Shuttle 65 nm CMOS process. Correct operation of the proposed FPGA on the test chip is confirmed.

Integrated Operation of Power Conversion Module for DC Distribution System (직류 배전 시스템을 위한 전력 변환 모듈의 통합 운전)

  • Lee, Hee-Jun;Shin, Soo-Choel;Hong, Suk-Jin;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.240-248
    • /
    • 2014
  • It is DC power that Output of renewable energy being recently developed and researched. Also, demand of DC power will expect to proliferate due to increase of digital load. Thus, DC distribution system providing high quality of power and reliability has emerged as a new distribution system. If the conventional distribution systems are substituted by proposed DC distribution system, the output of renewable energy can be connected with distribution systems under minimum power conversion. Therefore, in the event of connection with DC load, it can construct an efficient distribution system. In this paper, the integrated parallel operation of power conversion module for DC distribution system is proposed. Also, this paper proposed modularization of power conversion devices for DC distribution system and power control for parallel operation of large capacity system. DC distribution system consists of three power conversion modules such as AC/DC power conversion module 2 set, ESS module 1 set. DC distribution system controls suitable operation depending on the status of the DC power distribution system and load. Integrated operation of these systems is verified by simulation and experiment results.

Integrated Power Generation Systems Based on High Temperature Fuel Cells - A Review of Research and Development Status - (고온형 연료전지 기반 통합형 발전시스템 - 연구개발 동향 고찰 -)

  • Kim, Tong-Seop;Park, Sung-Ku
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.5
    • /
    • pp.299-310
    • /
    • 2009
  • Fuel cells are expected to be promising future power sources in both aspects of thermal efficiency and environmental friendliness. Accordingly, worldwide research and development efforts have been enormously increasing recently in various applications such as power plants, transportation and portable power sources. Among others, high temperature fuel cells, such as solid oxide fuel cells and molten carbonate fuel cells, are suitable for electric power plants. Moreover, their high operating temperature is quite appropriate to construct further advanced integrated systems. This paper reviews recent literatures on research and development of integrated power generation systems based on high temperature fuel cells. Research and development efforts are summarized in the area of fuel cell/ gas turbine hybrid systems, application of carbon capture technology to fuel cell systems, integration of coal gasification with fuel cells, and the use of alternative fuels.

Key Technical Challenges for Integrated Sensors in Power Electronics and Motor Drives

  • Lorenz, Robert D.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.4
    • /
    • pp.170-179
    • /
    • 2004
  • The paper presents technical issues which integrated sensors must address to be implemented in the next generation of power electronics and motor drives. The underlying goal of the sensor integration will be to improve reliability of power conversion systems while making the power converter and motor drive become the primary source of diagnostic signals for the application. The paper focuses on design methodologies that will allow this integration to succeed in meeting the technical demands for both reliability and for application level diagnostics.

A Study Integrated-Power-System Simulation Model of All-Electric-Ship (전기추진선박의 통합전력계통 시뮬레이션 모델에 관한 연구)

  • Ku, Hyun-Keun;Kwak, Ki-Kon;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.45-50
    • /
    • 2015
  • The simulation model of All-Electric-Ship consists of electrical and mechanical systems. Running the total simulation requires considerable time and causes a lack of computer memory, because the two systems have different dynamic characteristics. Therefore, integrated simulation is practically impossible. This paper proposes the simplified model of electrical system to reduce simulation time significantly, compared to the detailed model. The validity of the proposed simplified model is verified by comparing detailed and simplified simulation results. Thus, the simplified models are applied to the integrated system. As a result, total system simulation can be implemented.

The Design Efforts of the Intelligent & Integrated Gateway System for the Automation Systems in Electric Power Companies (전력자동화서비스를 위한 지능형 통합 게이트웨이 설계)

  • Kim, Myong-Soo;Hyun, Duck-Hwa;Cho, Seon-Gu
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2448-2450
    • /
    • 2002
  • In recent years, it has been a worldwide trend that many power utilities gave their attention to develop and operate their power plants, substation and distribution systems. Following this trend, KEPCO(Korea Electric Power Corporation) has developed many electric automation systems with various communication networks. It has been natural that the automation systems are just focused on to remote devices when they come to be designed. But, we have to shirt the focus to the automation system itself. There are many problems in maintenance and integration of the automation systems. When an automation system can't control some remote devices, there is no way to get why and which part(Master, Network, Master-side Modem or Remote-side modem, Remote Device, etc.) of the system has problems. Moreover the system just directly links to another automation system. If the system has to link many systems, it needs the linker per each systems. So, we need a new concept to resolve that problems, and develop the Intelligent and Integrated Gateway(IIG) for the automation systems for easy maintenance and integration.

  • PDF

Development of Integrated Start-up and Excitation System for Gas Turbine Synchronous Generator (가스터빈 동기기 통합형 기동 및 여자시스템 개발)

  • Ryu, Hoseon;Cha, Hanju
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.3
    • /
    • pp.183-188
    • /
    • 2014
  • Power conversion systems used in large gas turbine power plant can be divided into two main part. Because of the initial start-up characteristic of the gas turbine combustor, the gas turbine must be accelerated by starting device(LCI : Load Commutated Inverter) up to 10%~20% of rated speed to ignite it. In addition, the ECS(Excitation Control system) is used to control the rotor field current and reactive power in grid-connected synchronous generator. These two large power conversion systems are located in the same space(container) because of coordination control. Recently, many manufactures develop high speed controller based on function block available in the LCI and ECS with the newest power semiconductor. We also developed high speed controller based on function block to be using these two system and it meets the international standard IEC61131 as using real-time OS(VxWorks) and ISaGRAF. In order to install easily these systems at power plant, main controller, special module and IO module are used with high speed communication line other than electric wire line. Before initial product is installed on the site, prototype is produced and tests are conducted for it. The performance results of Integrated controller and application program(SFC, ECS) were described in this paper. The test results will be considered as the important resources for the application in future.

A Study on the Integrated Model Design and Circulation of the Customer Information for Electricity Market Competition (전력시장 공정경쟁을 위한 소비자정보 통합 모델 설계 및 유통에 관한 연구)

  • Ko, Jong-Min;Park, Sang-Hoo;Noh, Jae-Koo;Kim, Young-Il;Choi, Seong-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1668-1673
    • /
    • 2011
  • Recent power industries are to be progressed as moving into horizontal markets and expanding of competitive systems through promoting SmartGrid. In these environments, the information on power consumers leads to establish a part of power markets through active and real-time participations instead of participating it as a passive manner presented by a vertical integration. Also, such information should be established as a way that effectively reflects changes and market behaviors occurred in power market participants. Therefore, in this study, a method that develops consumer information models, performs integrated managements, implements registration and distribution, and forms integrated management centers is presented to commonly use the consumer information according to the change in the environment of power industries.