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Key Technical Challenges for Integrated Sensors in
Power Electronics and Motor Drives

Robert D. LorenzT

Abstract - The paper presents technical issues which integrated sensors must address to be
implemented in the next generation of power electronics and motor drives. The underlying goal of the
sensor integration will be to improve reliability of power conversion systems while making the power
converter and motor drive become the primary source of diagnostic signals for the application. The
paper focuses on design methodologies that will allow this integration to succeed in meeting the
technical demands for both reliability and for application level diagnostics.

1. Introduction

Integration of sensors in drives and power electronics
has the potential to improve reliability and cost while
adding increasing valuable functionality. The key sensors
to integrate into power electronic modules are current,
temperature, and thermal-mechanical strain. The key
sensors to integrate in motor drives are for position
(velocity & acceleration) and shaft (load) torque.

This paper focuses on integrated current and temperature
sensors as part of integrated active thermal-mechanical
strain control of power modules, and integrated position
and shaft torque sensing in motor and motor drive design.

2. Integrated Current Sensing

Current sensing in motor drives and power electronics is
generally implemented today with closed (or open) loop
Hall effect sensors for high performance drives or current
shunts for low cost, lower performance drives. The Hall
effect sensors are embedded in completely separate
systems that do not lend themselves to compact integration
due to the rather large size of their flux concentrating core.

If however, the next generation of intra-module
interconnects is based on deterministic geometry, then
compact, point field detectors can be integrated into that
spatial configuration and very compact, high performance
integration can be realized. Suitably compact, low cost,
point field detectors are widely used in the hard disk
read/write head industry. Thus, detectors such as the multi-
layer giant magnetoresistive (GMR) detectors with
alternating, thin (2-4 nm) NiFeCo/Cu layers (as well as
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other such types) have been recognized as having very
desirable properties for integration into power modules. [1-
7]

2.1 Point Field Detectors

Multi-layer GMR field detectors have very high field
sensitivity and very compact size, which makes them ideal
for integration. Figure 1 summarizes the key operating
principles of such multi-layer GMR point field detectors.
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Fig. 1 Multi-layer giant magnetoresistive point field detectors

Similar to classical strain gages, GMRs are often
configured in a serpentine (Fig. 2) to boost the series
resistance into the integer kiloOhm region, simplifying
signal conditioning [8].
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Fig. 2 Serpentine configuration of a GMR field detector [8]
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In such serpentine GMR detectors, a relatively linear,
low hysteresis, unipolar 20% change in resistance is

achieved in the presence of a bipolar magnetic as shown in
Fig. 3.
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Fig. 3 Unipolar GMR field detector output [8]
The GMR linearity is dependent on the operating bias. If

biased to it’s midrange, then linearity of better than 0.1%
have been achieved as in Fig. 4 [9].
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Fig. 4 Linearity of GMR detectors as a function of bias[9]

Similar to strain gages, GMR field detectors are often
used in a Wheatstone bridge configuration as shown in Fig.
6 such that thermal effects are decoupled.
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Fig. 5 GMR detectors in Wheatstone bridge layout for
classical temperature decoupling [8]

It has been demonstrated that with proper design of the
interface circuitry, bandwidths of over 300 kHz are
achievable as shown in Fig. 6 [9].
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Fig. 6 Frequency response of GMR detectors [9]

When used for current sensing, the GMR field detector
has been shown to yield results comparable to the accepted
industry standard, as shown in the waveforms of Fig. 7.

GMR point field

Closed loop, toroidal Hall effect

50-psecdiv

Fig. 7 Switching waveform comparison of GMR point
field detectors with closed loop, toroidal, Hall
effect sensors [9]
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Fig. 8 Integrating GMR detectors in a flex interconnect [12]
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Fig. 9 Using GMR detectors for flex interconnect sensing[12]}

GMR point field detector devices are very compact and
can easily be integrated into module level deterministic
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interconnect structures such as the flex interconnect
structure shown in Fig. 8 and Fig. 9 [12]

While the GMR is an excellent point field detector with
high potential for integrated current sensing, its key
limitation is the requirement for extensive 3-D analysis of
fields during module layout.

2.2 Spatial Design as a Key Issue for Integrated
Current Sensing

Fig. 10 shows two GMR point field detector locations in
a 3-D half-bridge module layout using a flex interconnect
structure. This 3-D spatial layout acts as the input to finite
element analysis of cross-coupled fields from adjacent
conductors.

Top Output ) Bottom Output

Fig. 10 Half-bridge, power module spatial layout with
GMR detectors integrated into interconnect
structure [10]
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Fig. 11 shows the results of such analysis of the spatial
layout for desired field coupling and undesired cross
coupling in the bottom output.

Fig. 12 shows the corresponding results for the top
output GMR location.
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It can be seen that spatial field analysis is a very
intensive aspect of the spatial interconnect layout process
for modules. This implies that design rules must be
developed to simplify the design without compromising the
layout possibilities. Early design procedures have resulted
in layouts such as those in Fig. 13.
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Fig. 13 Interconnect layout for GMR current sensing [12]
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A test module using this flex interconnect with integrated
GMR-based current sensing is shown in Fig. 14 [12]
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DBC
Fig. 14 Research implementation of power module with

GMR detector into  interconnect

structure [12]

integrated

While progress is being made, it can be concluded that a
major issue for utilization of point field detectors is the
lack of spatial design rules which at this point are still very
much in development and not yet a mature solution.

2.3 Pilot Current Devices
An alternative strategy for full device level integration is
to divert (pilot) current from a few cells of the device as

shown in Fig. 15.
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Fig. 15 Pilot current sensing in a MOSFET power device [13]
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Fig. 16 shows the device level integration of such pilot
cells in IGBT and rectifier structures.
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Fig. 16 Pilot current sensing cells in device structures [12,13]

Fig. 17 shows the device level integration of the pilot
cell current. signals using standard signal conditioning
methods.
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Fig. 17 Pilot current sensing signal conditioning interface
issues

The linearity of these methods has been shown to be
quite good, as seen in Fig. 17.
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Fig. 18 Pilot current sensing linearity [13]

Without galvanic isolation, the use of the lower side
switches is preferred as shown in Fig. 19 [14].
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Fig. 19 Three phase VSI with integrated pilot current
sensors in the three low-side switches[14]
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Despite this limitation, a reconstruction method and
variable structure control strategy have been developed as
¥

in Fig. 21 with results in Fig. 22-23.
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Fig. 21 Current regulation with reconstructed current [14,28]

encoder

—
<
i
—
=
o
=)
=1
QO
—_
<
—
=
5
£
=
(SO A ~ shifted-by-1-Amp.- - - - -
.
0.02 0.04 06 008 o
—_
£ 4 . — ;
Z .— Tem shifted by +1 Nw-m.
= + e R ot e p e e et o AP NI i i
Q
S R
)
S .\ Te*
=
L L L .
0.02 0.04 0.06 0.08 0.1

time{sec]

Fig. 22 Experimental results for 17 Hz fundamental [14,27]
1* row: three phase motor current measured (LEM)
2" row: phase a command & measured current (LEM)
3" row: command and estimated torque

Current [A]

Current [A]

g

timate anl

Fig. 23 Experimental results for a g-axis current step [14,27]
1% row: g-axis command and measured current
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For this phase current reconstruction, a synchronous
frame controller with a variable structure (during each 60
degree interval) can be seen to yield good performance.

The primary integration challenge for this technology is
the device integration issues which have yet to develop as a
mature technology.

3. Integrated Temperature Sensing

It is widely recognized that thermal limits determine the
rating of power converters. Thus, integrated thermal
sensing is strategic. Such sensing can be implemented via
inherent diode junction properties or by multi-functional
use of existing sensors.

3.1 Diode-on-Die Temperature Sensing
If a diode is mounted directly on the switch die surface,

its forward drop properties can be used to estimate
temperature. Fig. 24 shows one such physical configuration

IGBT

with integrated
temperature sensing
diode-on-die

Fig. 24 Diode-on-die temperature sensing [10]

The disadvantage of this method is that the heat flux is
constrained, which tends to produce an undesired, device
limiting hot spot.

3.2 Thermal Field Detectors & Interconnects

An alternative to this approach is to use the temperature
sensitivity of the GMR field detector as shown in Fig. 25.
Since the GMR already has signal terminations, this
integration approach reduces net interconnections, thus
improving reliability and decreasing cost.
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Fig. 25 Using GMR detectors with current source excitation

for temperature & field (current) sensing, V| —
Field (current) , V1 — Temperature [9]

The limitation of this method is the spatial placement of
the detector and the temperature estimation dynamics
which can be achieved when not directly sensing the key
temperatures. The critical tradeoffs are shown in Fig. 26
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and Fig. 27.
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Fig. 26 Detector spatial location options [10]

Temperature [°C]
— 1% Temperature Detector

/ o —Thermal Strip

a—— Solder Balls
= —Silicon Die
~~DBC

Fig. 27 Detector location and thermal modelling [10]

The avoid any device hot spots, the detector should be
located away from the junction. Thus, an accurate thermal
model (observer) will be needed to estimate the desired
junction temperature. A deterministic interconnect will also
facilitate an accuracte observer model since accurate
spatial parameters will be known by the module designer.
Figure 13 showed one such layout in which thermal strips
were integrated into the flex interconnect to conduct heat
from the junction for remote steady-state and transient
junction temperature estimation. Figure 14 showed a
laboratory module fabricated using this flex interconnect
and using the GMR for both temperature and current
sensing.

Accurate, spatial thermal dynamic characterization is
thus critical for the next generation of modules. A
deterministic interconnect structure is a key element.

4. Active Thermal-Mechanical Control

Active thermal control of power modules is critical to
improve robustness of applications such as motor drives.
The fully integrated temperature sensor greatly facilitates
this.

4.1 Power Cycle Thermal Mechanical Stress

Power cycles cause thermal mechanical fatigue of the
interconnects. This type of stress can be characterized with
both a temporal and a spatial ATj as shown in Fig. 28. The
spatial ATj is most appropriate for real time control
implementation because it relates directly to strain.
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Fig. 28 Temporal and spatial ATj and thermal-mechanical
stress cycles [21]

4.2 Power Cycle Temperature Control

The thermal mechanical fatigue properties [15-18] of the
module interconnect structure are depicted in Fig. 29,
which shows both the traditional fatigue plot and a plot
suitable for control implementation.
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Fig. 29 Device failure constraints in two formats [20,21]

Fig. 30 shows a region-based controller that implements
power cycle temperature regulation by manipulating
switching and conduction losses.
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Fig. 30 Region-based thermal-mechanical controller [20,21]
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Fig. 31 shows how this controller actively limits the
peak-to-peak AT)j stresses.

This regulation allows the power module and drive to be
run in a sustained fashion at appropriately varying thermal
cycle limits without causing fatigue life deterioration.

The critical issues for this technology are the need for
integrated sensing and for integrated thermal-mechanical
modeling of the spatial thermal properties of the module.

5. Machine Design for Self-Sensing

The key sensors to integrate in motor drives are for
position (velocity & acceleration) and shaft (load) torque.
The position sensor lends itself to being included as part of
the machine design such that “self-sensing” of the motor
rotor "itself" can then become the standard. Evolution of
multi-functional motor design promises to facilitate this
opportunity for reliability enhancement of motor drives.

5.1 Self-Sensing Principles

Self-sensing, (use of the motor “itself” as the sensor) has
three fundamental requirements as shown in Fig’s. 32-34:
1) a known saliency, 2) persistent excitation via the
inverter, and 3) saliency tracking using the persistent
excitation [22].
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Fig. 32 Self-sensing via tracking intrinsic machine

saliencies [22]

The persistent excitation can take the form of an injected
carrier frequency voltage.
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Fig. 33 Self-sensing carrier excitation in a motor drive [22]

The carrier signal modulation can be tracked to estimate
position with adequate bandwidth and noise filtering.
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Fig. 34 Saliency tracking observer using carrier injection
(22]

This methodology can be implemented in a variety of
ways, but in all cases the suitability of the machine as a
sensor is a major focus.

5.2 Machine design for self-sensing

In effect, the various self-sensing methods are all
tracking the “electromagnetic spatial image” of the
machine. The robustness and accuracy of the methods
depends on image directly [22-26]. Fig. 35 shows the
simplest image: a single spatial harmonic. Properly
implemented, it has no parameter sensitivity and is very
robust.
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Fig. 35 Carrier frequency currents for a machine with a
single harmonic saliency [24]

The image can be made considerably more problematic
if additional harmonics are present as shown in Fig’s 36-37
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Fig. 36 Frame dependent images for carrier frequency
injection with a machine having a single spatial

harmonic saliency [24]
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Fig. 37 Synchronous frame images for carrier frequency
injection with a machine having two spatial

harmonic saliencies [24]

The critical machine design challenge is to develop
deterministic saliencies, such as the single harmonic
saliency which can be tracked without knowledge of
parameters, to create a robust self-sensing system.

5.3 Drive design for integrated shaft torque (load)
sensing

Observers can be used to extract load torque estimates in
motion control systems using position sensors as shown in
Fig. 38 [29].
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When properly formed, observers have very desirable
estimation accuracy properties as show in Fig. 39 [30].

These same load torque properties are also inherently
estimated by the self-sensing observers used with injection
(Fig. 34) or when simply tracking backemf at high speeds
as shown in Fig. 40 [31].
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Fig. 40 Back EMF tracking observer estimating load
torque [30]
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As in all cases using self-sensing principles, the critical
issues in this technology is the quality of the machine as a
sensor. The higher order effects limit the accuracy and thus
"design for self-sensing" is the major challenge for both
integrated load sensing and integrated motion sensing.

6. Conclusions

Integration of sensors in drives and power electronics
has the potential to improve reliability and cost of these
key enabling technologies.

The key sensors to integrate into power electronic
modules are current, temperature, and thermal-mechanical
strain. The key sensors to integrate in motor drives are for
position (velocity & acceleration) and shaft (load) torque.

Isolated current sensing can be implemented using point
field detection methods which take full advantage of the
next generation, deterministic interconnect structures in
power modules. The key challenges are spatial design
techniques and guidelines that enable point field estimation
during layout of complex structures such as power modules.

Alternatively, current sensing can be implemented with
pilot current devices and proper signal reconstruction. The
development of power devices with access to pilot current
cells is a key challenge to the evolution of this technology.

Temperature sensing can be implemented using the same
devices and terminations used for isolated current sensing,
yielding both cost and reliability advantages. However,
spatial design for thermal mechanical strain sensing using
temperature is a key challenge.

Active thermal control of power modules is critical to
improve robustness of applications such as motor drives. A
fully integrated means of thermal-mechanical strain
sensing is the key challenge.

The motor drive position sensor and load torque sensor
lend themselves to being included as part of the machine
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design such that “self-sensing” of the motor rotor "itself"
can easily and robustly extract the signals. Evolution of
machine design for both sensing and power conversion is
the key challenge.
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