• Title/Summary/Keyword: Integrated monitoring

Search Result 1,237, Processing Time 0.031 seconds

Vibration Monitoring and Analysis of a 6kW Wind Stand Alone Turbine Generator (6kW 독립형 풍력발전기의 진동 모니터링 및 분석)

  • Kim, Seock-Hyun;Nam, Yoon-Su;Yoo, Neung-Soo;Lee, Jeong-Wan;Park, Mu-Yeol;Park, Hae-Gyun;Kim, Tae-Hyeong
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.81-86
    • /
    • 2005
  • A vibration monitoring system for a small class of wind turbine (W/T) is established and operated. The monitoring system consists of monolithic integrated chip accelerometer for vibration monitoring, anemometers for wind data acquisition and auxiliary sensors for atmospheric data. Using the monitoring system, vibration response of a 6kW W/T generator is investigated. Acceleration data of the W/T tower under various operation condition is acquired in real time using LabVIEW and is remotely transferred from the test site to the laboratory in school by internet. Vibration state of the tower structure is diagnosed within the operating speed range. Resonance frequency range of the test model is investigated with the wind speed data of the test site.

  • PDF

sFlow Monitoring for a Virtualization Testbed in KREONET (KREONET에서 가상 환경을 위한 sFlow 모니터링 시스템)

  • Fitriyani, Norma Latif;Kim, Jae-rin;Song, Wang-Cheol;Cho, Buseung;Kim, Sunghae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.234-237
    • /
    • 2014
  • This paper provides insights into the sFlow monitoring system of OF@KREONET. OF@KREONET is software defined network (SDN) testbed adapted by KREONET (Korea Research Environment Open NETwork). OF@KREONET uses SDN-based network virtualization to slice the network among multiple concurrent experimenter. Flow Monitoring of OF@KREONET using sFlow. sFlow and OpenFlow can be used to provide an integrated flow monitoring system where OpenFlow controller can be used to define flows to be monitored by sFlow. OF@KREONET flow monitoring system supports monitoring of per slice FlowSpace. An Experimental can monitor his/her own FlowSpace while network administrator can monitor all spaces.

Force monitoring of steel cables using vision-based sensing technology: methodology and experimental verification

  • Ye, X.W.;Dong, C.Z.;Liu, T.
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.585-599
    • /
    • 2016
  • Steel cables serve as the key structural components in long-span bridges, and the force state of the steel cable is deemed to be one of the most important determinant factors representing the safety condition of bridge structures. The disadvantages of traditional cable force measurement methods have been envisaged and development of an effective alternative is still desired. In the last decade, the vision-based sensing technology has been rapidly developed and broadly applied in the field of structural health monitoring (SHM). With the aid of vision-based multi-point structural displacement measurement method, monitoring of the tensile force of the steel cable can be realized. In this paper, a novel cable force monitoring system integrated with a multi-point pattern matching algorithm is developed. The feasibility and accuracy of the developed vision-based force monitoring system has been validated by conducting the uniaxial tensile tests of steel bars, steel wire ropes, and parallel strand cables on a universal testing machine (UTM) as well as a series of moving loading experiments on a scale arch bridge model. The comparative study of the experimental outcomes indicates that the results obtained by the vision-based system are consistent with those measured by the traditional method for cable force measurement.

Design and implementation of a SHM system for a heritage timber building

  • Yang, Qingshan;Wang, Juan;Kim, Sunjoong;Chen, Huihui;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.561-576
    • /
    • 2022
  • Heritage timber structures represent the history and culture of a nation. These structures have been inherited from previous generations; however, they inevitably exhibit deterioration over time, potentially leading to structural deficiencies. Structural Health Monitoring (SHM) offers the potential to assess operational anomalies, deterioration, and damage through processing and analysis of data collected from transducers and sensors mounted on the structure. This paper reports on the design and implementation of a long-term SHM system on the Feiyun Wooden Pavilion in China, a three-story timber building built more than 500 years ago. The principles and features of the design and implementation of SHM systems for heritage timber buildings are systematically discussed. In total, 104 sensors of 6 different types are deployed on the structure to monitor the environmental effects and structural responses, including air temperature and humidity, wind speed and direction, structural temperatures, strain, inclination, and acceleration. In addition, integrated data acquisition and transmission subsystem using a newly developed software platform are implemented. Selected preliminary statistical and correlation analysis using one year of monitoring data are presented to demonstrate the condition assessment capability of the system based on the monitoring data.

Low-cost privacy protection integrated monitoring system using interest emphasis method (관심강조 방법을 활용한 저비용 사생활보호 통합관제시스템)

  • Shin, Kwang-Seong;Shin, Seong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.234-239
    • /
    • 2021
  • Recently, as the installation of a large number of high-performance CCTVs for crime prevention and traffic control has increased rapidly, the problem of increasing system requirements for response to privacy infringement factors and analysis of high-definition image information transmitted from multiple cameras has been actively emerging. Accordingly, there is a need for a method for responding to privacy infringement and a method for efficiently processing surveillance images input from multiple cameras. In this paper, in order to reduce the processing cost of the input image and improve the processing speed, an integrated image is generated by grouping images input from a plurality of cameras. After analyzing the pre-generated integrated video, it detects a preset privacy event or an event that highlights interest. Depending on whether or not an event is detected, you will perform an editing operation corresponding to the event.

Wearable System for Real-time Monitoring of Multiple Vital Signs (인체 착용형 다중 생체신호 실시간 모니터링 시스템)

  • Lee, Young-Dong;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.249-252
    • /
    • 2008
  • A wearable ubiquitous health care monitoring system using integrated ECG and accelerometersensors based on WSN is designed and developed. Wireless sensor network technology is applied for non intrusive healthcare in some wide area coverage with small battery support for RF transmission. We developed wearable devices which are wearable USN node, sensor board and base-station. Low power operating ECG and accelerometer sensor board was integrated to wearable USN node for user's health monitoring. The wearable ubiquitous healthcare monitoring system allows physiological data to be transmitted in wireless sensor network from on body wearable sensor devices to a base-station connected to server PC using IEEE 802.15.4. Physiological data displays and stores on server PC continuously.

  • PDF

Towards an Integrated Drought Monitoring with Multi-satellite Data Products Over Korean Peninsular (위성자료를 활용한 한반도 전역의 가뭄 통합 모니터링 방안)

  • Kim, Youngwook;Shim, Changsub
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.993-1001
    • /
    • 2017
  • Drought is a worldwide natural disaster with extensively adverse impacts on natural ecosystems, agricultural products, social communities and regional economy. Various global satellite observations, including SMAP soil moisture, GRACE terrestrial water storage, Terra and Aqua vegetation productivity, evapotranspiration, and satellite precipitation measures are currently used to characterize seasonal timing and inter-annual variations of regional water supply pattern, vegetation growth, drought events, and its associated influence ecosystems and human society. We suggest the satellite monitoring system development to quantify meteorological, eco-hydrological, and socio-ecological factors related to drought events, and characterize spatial and temporal drought patterns in Korea. The combination of these complementary remote sensing observations(visible to microwave bands) provide an effective means for evaluating regional variations in the timing, frequency, and duration of drought, and availability of water supply influencing vegetation and crop growth. This integrated drought monitoring could help national capacity to deal with natural disasters.

Spatio-temporal Variation of Groundwater Level and Electrical Conductivity in Coastal Areas of Jeju Island

  • Lim, Woo-Ri;Park, Won-Bae;Lee, Chang-Han;Hamm, Se-Yeong
    • Journal of the Korean earth science society
    • /
    • v.43 no.4
    • /
    • pp.539-556
    • /
    • 2022
  • In the coastal areas of Jeju Island, composed of volcanic rocks, saltwater intrusion occurs due to excessive pumping and geological characteristics. Groundwater level and electrical conductivity (EC) in multi-depth monitoring wells in coastal areas were characterized from 2005 to 2019. During the period of the lowest monthly precipitation, from November 2017 until February 2018, groundwater level decreased by 0.32-0.91 m. During the period of the highest monthly precipitation, from September 2019 until October 2019, groundwater level increased by 0.46-2.95 m. Groundwater level fluctuation between the dry and wet seasons ranged from 0.79 to 3.73 m (average 1.82 m) in the eastern area, from 0.47 to 6.57 m (average 2.55 m) in the western area, from 0.77 to 8.59 m (average 3.53 m) in the southern area, and from 1.06 to 12.36 m (average 5.92 m) in the northern area. In 2013, when the area experienced decreased annual precipitation, at some monitoring wells in the western area, the groundwater level decreased due to excessive groundwater pumping and saltwater intrusion. Based on EC values of 10,000 ㎲/cm or more, saltwater intrusion from the coastline was 10.2 km in the eastern area, 4.1 km in the western area, 5.8 km in the southern area, and 5.7 km in the northern area. Autocorrelation analysis of groundwater level revealed that the arithmetic mean of delay time was 0.43 months in the eastern area, 0.87 months in the northern area, 10.93 months in the southern area, and 17.02 months in the western area. Although a few monitoring wells were strongly influenced by nearby pumping wells, the cross-correlation function of the groundwater level was the highest with precipitation in most wells. The seasonal autoregressive integrated moving average model indicated that the groundwater level will decrease in most wells in the western area and decrease or increase in different wells in the eastern area.

Integrated Health Monitoring System for Infra-Structure (도시인프라 구조물 건전성 통합 모니터링 시스템)

  • Ju, Seung-Hwan;Seo, Hee-Suk;Lee, Seung-Hwan;Kim, Min-Soo
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.2
    • /
    • pp.147-155
    • /
    • 2010
  • It often occur to nature disaster that like earthquake, typhoon, etc. around KOREA. A Haiti and Chile also metropolitan area of KOREA occur earthquake. in result, People consider nature disaster. Structures of present age are easily affected by nature disaster. So we are important that warn of dangerous situation as soon as possible. On this study, I introduce Integrated Health Monitoring System for Infra-structure. I develop Structure Health Monitoring System on web-site. Administrator always monitor structure on real-time using internet network. As Administrator using mobile device like PDA, Administrator always monitor structure. As using this system, Damage of nature disaster is minimized and is prevented post damage.

Development of an Unmanned Land-Based Shrimp Farm Integrated Monitoring System (무인 육상 새우 양식장 통합 모니터링 시스템 개발)

  • Hyeong-Bin Park;Kyoung-Wook Park;Sung-Keun Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.209-216
    • /
    • 2024
  • Land shrimp farms can control the growth environment more stably than coastal ones, making them advantageous for high-quality, large-scale production. In order to maintain an optimal shrimp growth environment, various factors such as water circulation, maintaining appropriate water temperature, oxygen supply, and feed supply must be managed. In particular, failure to properly manage water quality can lead to the death of shrimp, making it difficult to have people stationed at the farm 24 hours a day to continuously manage them. In this paper, to solve this problem, we design an integrated monitoring system for land farms that can be operated with minimal manpower. The proposed design plan uses IoT technology to collect real-time images of land farms, pump status, water quality data, and energy usage and transmit them to the server. Through web interfaces and smartphone apps, administrators can check the status of the farm stored on the server anytime, anywhere in real time and take necessary measures. Therefore, it is possible to significantly reduce field work hours without the need for managers to reside in the farm.