• Title/Summary/Keyword: Integrated interface

Search Result 970, Processing Time 0.036 seconds

Web Hypermedia Resources Reuse and Integration for On-Demand M-Learning

  • Berri, Jawad;Benlamri, Rachid;Atif, Yacine;Khallouki, Hajar
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.125-136
    • /
    • 2021
  • The development of systems that can generate automatically instructional material is a challenging goal for the e-learning community. These systems pave the way towards large scale e-learning deployment as they produce instruction on-demand for users requesting to learn about any topic, anywhere and anytime. However, realizing such systems is possible with the availability of vast repositories of web information in different formats that can be searched, reused and integrated into information-rich environments for interactive learning. This paradigm of learning relieves instructors from the tedious authoring task, making them focusing more on the design and quality of instruction. This paper presents a mobile learning system (Mole) that supports the generation of instructional material in M-Learning (Mobile Learning) contexts, by reusing and integrating heterogeneous hypermedia web resources. Mole uses open hypermedia repositories to build a Learning Web and to generate learning objects including various hypermedia resources that are adapted to the user context. Learning is delivered through a nice graphical user interface allowing the user to navigate conveniently while building their own learning path. A test case scenario illustrating Mole is presented along with a system evaluation which shows that in 90% of the cases Mole was able to generate learning objects that are related to the user query.

Establishment and Application of a Femtosecond-laser Two-photon-polymerization Additive-manufacturing System

  • Li, Shanggeng;Zhang, Shuai;Xie, Mengmeng;Li, Jing;Li, Ning;Yin, Qiang;He, Zhibing;Zhang, Lin
    • Current Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.381-391
    • /
    • 2022
  • Two-photon-polymerization additive-manufacturing systems feature high resolution and precision. However, there are few reports on specific methods and possible problems concerning the use of small lasers to independently build such platforms. In this paper, a femtosecond-laser two-photon-polymerization additive-manufacturing system containing an optical unit, control unit, monitoring unit, and testing unit is built using a miniature femtosecond laser, with a detailed building process and corresponding control software that is developed independently. This system has integrated functions of light-spot detection, interface searching, micro-/nanomanufacturing, and performance testing. In addition, possible problems in the processes of platform establishment, resin preparation, and actual polymerization for two-photon-polymerization additive manufacturing are explained specifically, and the causes of these problems analyzed. Moreover, the impacts of different power levels and scanning speeds on the degree of polymerization are compared, and the influence of the magnification of the object lens on the linewidth is analyzed in detail. A qualitative analysis model is established, and the concepts of the threshold broadening and focus narrowing effects are proposed, with their influences and cooperative relation discussed. Besides, a linear structure with micrometer accuracy is manufactured at the millimeter scale.

A modularized numerical framework for the process-based total system performance assessment of geological disposal systems

  • Kim, Jung-Woo;Jang, Hong;Lee, Dong Hyuk;Cho, Hyun Ho;Lee, Jaewon;Kim, Minjeong;Ju, Heejae
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2828-2839
    • /
    • 2022
  • This study developed a safety assessment tool for geological disposal systems called APro, a systemically integrated modeling system based on modularizing and coupling the processes which need to be considered in a geological disposal system. Thermal, hydraulic, chemical, canister failure, radionuclide release and transport processes were considered in the current version of APro. Each of the unit processes in APro consists of a single Default Module, and several Alternative Modules which can increase the flexibility of the model. As an initial stage of developing the modularization concept and modeling interface, the Default Modules of each unit process were described, with one Alternative Module of chemical process. The computation part of APro is mainly a MATLAB workspace controlling COMSOL and PHREEQC, which are coupled by an operator splitting scheme. The APro model domain is a stylized geological disposal system employing the Swedish disposal concept (KBS-3 type), but the repository layout can be freely adjusted. In order to show the applicability of APro to the total system performance assessment of geological disposal system, some sample simulations were conducted. From the results, it was confirmed that coupling of the thermal and hydraulic processes and coupling of the canister failure and the radionuclide release processes were well reflected in APro. In addition, the technical connectivity between COMSOL and PHREEQC was also confirmed.

Simulation, design optimization, and experimental validation of a silver SPND for neutron flux mapping in the Tehran MTR

  • Saghafi, Mahdi;Ayyoubzadeh, Seyed Mohsen;Terman, Mohammad Sadegh
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2852-2859
    • /
    • 2020
  • This paper deals with the simulation-based design optimization and experimental validation of the characteristics of an in-core silver Self-Powered Neutron Detector (SPND). Optimized dimensions of the SPND are determined by combining Monte Carlo simulations and analytical methods. As a first step, the Monte Carlo transport code MCNPX is used to follow the trajectory and fate of the neutrons emitted from an external source. This simulation is able to seamlessly integrate various phenomena, including neutron slowing-down and shielding effects. Then, the expected number of beta particles and their energy spectrum following a neutron capture reaction in the silver emitter are fetched from the TENDEL database using the JANIS software interface and integrated with the data from the first step to yield the origin and spectrum of the source electrons. Eventually, the MCNPX transport code is used for the Monte Carlo calculation of the ballistic current of beta particles in the various regions of the SPND. Then, the output current and the maximum insulator thickness to avoid breakdown are determined. The optimum design of the SPND is then manufactured and experimental tests are conducted. The calculated design parameters of this detector have been found in good agreement with the obtained experimental results.

Reactive Transport Modeling for Investigating Elemental Cycling at the Groundwater-Surface Water Interface (지하수-지표수 물질순환 평가를 위한 반응성 운송 모형 연구)

  • Heewon Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.16-16
    • /
    • 2023
  • 기후변화로 인한 가뭄, 홍수, 녹조 등 이상기후 현상들이 본격화함에 따라 안정적인 수자원 관리의 필요성이 증가하고 있다. 특히 급변하는 환경조건 속에서도 안정적인 수자원 확보를 가능하게 하는 지하수 자원의 적극적인 활용은 기후변화대응에 있어 핵심적인 요소이다. 지하수는 하천, 호수 연안지역 등 다양한 지표의 수문환경과 연결되어 천층지권의 수문생태적 특성을 결정하기 때문에, 지속가능한 수자원 활용을 위해서는 지하수와 지표수의 상호작용에 대한 통합적인 검토가 이루어져야 한다. 하지만 긴밀하게 연계된 특성에도 불구하고 지하수와 지표수에 대한 연구는 오랜기간 개별수문환경에 대해 독립적으로 수행되어왔다. 이러한 연구경향은 저류시간이 크게 다른 지하수와 지표수의 수문적 특성뿐 아니라 개별수문환경에서 나타나는 작용들을 통합적으로 다룰 수 있는 모델의 부제에도 기인한다. 최근 비약적인 연산능력의 향상과 함께 지하수-지표수 환경을 연계한 통합수문모델(Integrated Hydrology Model)의 개발 및 활용이 이루어짐에 따라 기후변화 및 수자원 활용에 따른 수문환경변화 대한 통합적인 연구 시도가 이루어지고 있다. 본 발표에서는 최근의 통합수문모델과 다중요소 반응성 운송 모형(Multicomponent Reactive Transport Model)의 연계를 통한 물질순환 연구의 최신 동향을 소개하고(농도-유량 상관관계, 지표수계의 화학적 풍화와 이산화탄소 저감, 녹조 등), 데이터 기반 모형을 통한 통합수문모델의 연산 효율 및 정확성 향상을 위한 방법에 대해 모색하고자 한다.

  • PDF

A Study on the Integrated Interface for Visualizing Rotor Dynamics Data on VR Environments (가상현실 환경에서의 로터 동역학 데이터 가시화를 위한 통합 인터페이스)

  • Hur, YoungJu;Kim, MinAh;Lee, JoongYoun;Koo, GeeBum
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.389-390
    • /
    • 2009
  • 컴퓨터에서 생성된 시뮬레이션의 결과는 컴퓨터 그래픽스 기술을 이용한 일련의 가시화 과정을 거쳐서 인간이 해석하기 쉬운 형태로 변형되게 된다. 최근에는 고성능 컴퓨터(HPC: High Performance Computer)의 발달로 인해 데이터의 크기가 점점 더 증가하는 추세에 있으며, 이런 복잡한 데이터를 해석하는 데는 클러스터 시스템을 이용한 고해상도의 디스플레이 장치가 필요하다. 하지만 이런 디스플레이 장치에서 사용자 인터페이스를 제공하는 방법은 VR(Virtual Reality, 가상현실) 환경을 활용하는 것이 거의 유일한 해결책이다. 하지만 현재 VR 환경에서 시뮬레이션 데이터 해석에 필요한 적절한 사용자 인터페이스를 제공하는 툴은 존재하지 않는다. 이에, 본 논문에서는 시뮬레이터 데이터, 특히 로터 동역학 분야의 시뮬레이션 데이터를 VR 환경에서 가시화하는 GLOVE 프레임워크의 통합 인터페이스를 소개한다. 이 인터페이스는 VR 환경에서 시뮬레이션 데이터를 실시간으로 상호작용을 통해 분석하는 데 필요한 기반 환경을 제공한다.

Optimal design of a wind turbine supporting system accounting for soil-structure interaction

  • Ali I. Karakas;Ayse T. Daloglua
    • Structural Engineering and Mechanics
    • /
    • v.88 no.3
    • /
    • pp.273-285
    • /
    • 2023
  • This study examines how the interaction between soil and a wind turbine's supporting system affects the optimal design. The supporting system resting on an elastic soil foundation consists of a steel conical tower and a concrete circular raft foundation, and it is subjected to wind loads. The material cost of the supporting system is aimed to be minimized employing various metaheuristic optimization algorithms including teaching-learning based optimization (TLBO). To include the influence of the soil in the optimization process, modified Vlasov and Gazetas elastic soil models are integrated into the optimization algorithms using the application programing interface (API) feature of the structural analysis program providing two-way data flow. As far as the optimal designs are considered, the best minimum cost design is achieved for the TLBO algorithm, and the modified Vlasov model makes the design economical compared with the simple Gazetas and infinitely rigid soil models. Especially, the optimum design dimensions of the raft foundation extremely reduce when the Vlasov realistic soil reactions are included in the optimum analysis. Additionally, as the designated design wind speed is decreased, the beneficial impact of soil interaction on the optimum material cost diminishes.

Four-channel GaAs multifunction chips with bottom RF interface for Ka-band SATCOM antennas

  • Jin-Cheol Jeong;Junhan Lim;Dong-Pil Chang
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.323-332
    • /
    • 2024
  • Receiver and transmitter monolithic microwave integrated circuit (MMIC) multifunction chips (MFCs) for active phased-array antennas for Ka-band satellite communication (SATCOM) terminals have been designed and fabricated using a 0.15-㎛ GaAs pseudomorphic high-electron mobility transistor (pHEMT) process. The MFCs consist of four-channel radio frequency (RF) paths and a 4:1 combiner. Each channel provides several functions such as signal amplification, 6-bit phase shifting, and 5-bit attenuation with a 44-bit serial-to-parallel converter (SPC). RF pads are implemented on the bottom side of the chip to remove the parasitic inductance induced by wire bonding. The area of the fabricated chips is 5.2 mm × 4.2 mm. The receiver chip exhibits a gain of 18 dB and a noise figure of 2.0 dB over a frequency range from 17 GHz to 21 GHz with a low direct current (DC) power of 0.36 W. The transmitter chip provides a gain of 20 dB and a 1-dB gain compression point (P1dB) of 18.4 dBm over a frequency range from 28 GHz to 31 GHz with a low DC power of 0.85 W. The P1dB can be increased to 20.6 dBm at a higher bias of +4.5 V.

Research on Service Enhancement Approach based on Super App Review Data using Topic Modeling (슈퍼앱 리뷰 토픽모델링을 통한 서비스 강화 방안 연구)

  • Jewon Yoo;Chie Hoon Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_2
    • /
    • pp.343-356
    • /
    • 2024
  • Super app is an application that provides a variety of services in a unified interface within a single platform. With the acceleration of digital transformation, super apps are becoming more prevalent. This study aims to suggest service enhancement measures by analyzing the user review data before and after the transition to a super app. To this end, user review data from a payment-based super app(Shinhan Play) were collected and studied via topic modeling. Moreover, a matrix for assessing the importance and usefulness of topics is introduced, which relies on the eigenvector centrality of the inter-topic network obtained through topic modeling and the number of review recommendations. This allowed us to identify and categorize topics with high utility and impact. Prior to the transition, the factors contributing to user satisfaction included 'payment service,' 'additional service,' and 'improvement.' Following the transition, user satisfaction was associated with 'payment service' and 'integrated UX.' Conversely, dissatisfaction factors before the transition encompassed issues related to 'signup/installation,' 'payment error/response,' 'security authentication,' and 'security error.' Following the transition, user dissatisfaction arose from concerns regarding 'update/error response' and 'UX/UI.' The research results are expected to be used as a basis for establishing strategies to strengthen service competitiveness by making super app services more user-oriented.

Development of Chip-based Precision Motion Controller

  • Cho, Jung-Uk;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1022-1027
    • /
    • 2003
  • The Motion controllers provide the sophisticated performance and enhanced capabilities we can see in the movements of robotic systems. Several types of motion controllers are available, some based on the kind of overall control system in use. PLC (Programmable Logic Controller)-based motion controllers still predominate. The many peoples use MCU (Micro Controller Unit)-based board level motion controllers and will continue to in the near-term future. These motion controllers control a variety motor system like robotic systems. Generally, They consist of large and complex circuits. PLC-based motion controller consists of high performance PLC, development tool, and application specific software. It can be cause to generate several problems that are large size and space, much cabling, and additional high coasts. MCU-based motion controller consists of memories like ROM and RAM, I/O interface ports, and decoder in order to operate MCU. Additionally, it needs DPRAM to communicate with host PC, counter to get position information of motor by using encoder signal, additional circuits to control servo, and application specific software to generate a various velocity profiles. It can be causes to generate several problems that are overall system complexity, large size and space, much cabling, large power consumption and additional high costs. Also, it needs much times to calculate velocity profile because of generating by software method and don't generate various velocity profiles like arbitrary velocity profile. Therefore, It is hard to generate expected various velocity profiles. And further, to embed real-time OS (Operating System) is considered for more reliable motion control. In this paper, the structure of chip-based precision motion controller is proposed to solve above-mentioned problems of control systems. This proposed motion controller is designed with a FPGA (Field Programmable Gate Arrays) by using the VHDL (Very high speed integrated circuit Hardware Description Language) and Handel-C that is program language for deign hardware. This motion controller consists of Velocity Profile Generator (VPG) part to generate expected various velocity profiles, PCI Interface part to communicate with host PC, Feedback Counter part to get position information by using encoder signal, Clock Generator to generate expected various clock signal, Controller part to control position of motor with generated velocity profile and position information, and Data Converter part to convert and transmit compatible data to D/A converter.

  • PDF