• 제목/요약/키워드: Integrated displacement

검색결과 181건 처리시간 0.021초

Occurrence mechanism of recent large earthquake ground motions at nuclear power plant sites in Japan under soil-structure interaction

  • Kamagata, Shuichi;Takeqaki, Izuru
    • Earthquakes and Structures
    • /
    • 제4권5호
    • /
    • pp.557-585
    • /
    • 2013
  • The recent huge earthquake ground motion records in Japan result in the reconsideration of seismic design forces for nuclear power stations from the view point of seismological research. In addition, the seismic design force should be defined also from the view point of structural engineering. In this paper it is shown that one of the occurrence mechanisms of such large acceleration in recent seismic records (recorded in or near massive structures and not free-field ground motions) is due to the interaction between a massive building and its surrounding soil which induces amplification of local mode in the surface soil. Furthermore on-site investigation after earthquakes in the nuclear power stations reveals some damages of soil around the building (cracks, settlement and sand boiling). The influence of plastic behavior of soil is investigated in the context of interaction between the structure and the surrounding soil. Moreover the amplification property of the surface soil is investigated from the seismic records of the Suruga-gulf earthquake in 2009 and the 2011 off the Pacific coast of Tohoku earthquake in 2011. Two methods are introduced for the analysis of the non-stationary process of ground motions. It is shown that the non-stationary Fourier spectra can detect the temporal change of frequency contents of ground motions and the displacement profile integrated from its acceleration profile is useful to evaluate the seismic behavior of the building and the surrounding soil.

자세음양 균형검사로서 Fukuda Stepping Test에 대한 문헌적 고찰 (Review on Fukuda Stepping Test, Its Procedures and Criteria for the Evaluation of the Postural Balance Control)

  • 배진용;이재민;이경란;이영준;인창식
    • 턱관절균형의학회지
    • /
    • 제4권1호
    • /
    • pp.5-7
    • /
    • 2014
  • Objectives: Neurological examination on balance function is widely applied in clinical practice. Balance function may be clinically relevant to an assessment of yinyang balance in such therapies as temporomandibular joint balancing medicine. Fukuda stepping test is a relatively not-well-known method of balance function test. This study reviewed the procedures and criteria of Fukuda stepping test. Method: Recent articles on Fukuda stepping test were searched in public database (Pubmed, Proquest) and reviewed for its procedures and clinical implications. Results: Fukuda stepping test adopts 50 steps or 100 steps with subsequent assessment of the deviation or displacement of the subject. It may not be reliable during acute phase. Conclusion: Fukuda stepping test may be utilized and be further developed to assess balance function in the neurological management of functions.

  • PDF

개인휴대 추측항법 시스템을 위한 신경망을 이용한 보폭 결정 방법 (Step size determination method using neural network for personal navigation system)

  • 윤선일;홍진석;지규인
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.80-80
    • /
    • 2000
  • The GPS can provide accurate position information on the earth. But GPS receiver can't give position information inside buildings. DR(Dead-Reckoning) or INS(Inertial Navigation System) gives position information continuously indoors as well as outdoors, because they do not depend on the external navigation information. But in general, the inertial sensors severely suffer from their drift errors, the error of these navigation system increases with time. GPS and DR sensors can be integrated together with Kalman filter to overcome these problems. In this paper, we developed a personal navigation system which can be carried by person, using GPS and electronic pedometer. The person's footstep is detected by an accelerometer installed in vertical direction and the direction of movement is sensed by gyroscope and magnetic compass. In this case the step size is varying with person and changing with circumstance, so determining step size is the problem. In order to calculate the step size of detected footstep, the neural network method is used. The teaming pattern of the neural network is determined by human walking pattern data provided by 3-axis accelerometer and gyroscope. We can calculate person's location with displacement and heading from this information. And this neural network method that calculates step size gives more improved position information better than fixed step size.

  • PDF

Real-time seismic structural response prediction system based on support vector machine

  • Lin, Kuang Yi;Lin, Tzu Kang;Lin, Yo
    • Earthquakes and Structures
    • /
    • 제18권2호
    • /
    • pp.163-170
    • /
    • 2020
  • Floor acceleration plays a major role in the seismic design of nonstructural components and equipment supported by structures. Large floor acceleration may cause structural damage to or even collapse of buildings. For precision instruments in high-tech factories, even small floor accelerations can cause considerable damage in this study. Six P-wave parameters, namely the peak measurement of acceleration, peak measurement of velocity, peak measurement of displacement, effective predominant period, integral of squared velocity, and cumulative absolute velocity, were estimated from the first 3 s of a vertical ground acceleration time history. Subsequently, a new predictive algorithm was developed, which utilizes the aforementioned parameters with the floor height and fundamental period of the structure as the new inputs of a support vector regression model. Representative earthquakes, which were recorded by the Structure Strong Earthquake Monitoring System of the Central Weather Bureau in Taiwan from 1992 to 2016, were used to construct the support vector regression model for predicting the peak floor acceleration (PFA) of each floor. The results indicated that the accuracy of the predicted PFA, which was defined as a PFA within a one-level difference from the measured PFA on Taiwan's seismic intensity scale, was 96.96%. The proposed system can be integrated into the existing earthquake early warning system to provide complete protection to life and the economy.

Optimal placement of piezoelectric curve beams in structural shape control

  • Wang, Jian;Zhao, Guozhong;Zhang, Hongwu
    • Smart Structures and Systems
    • /
    • 제5권3호
    • /
    • pp.241-260
    • /
    • 2009
  • Shape control of flexible structures using piezoelectric materials has attracted much attention due to its wide applications in controllable systems such as space and aeronautical engineering. The major work in the field is to find a best control voltage or an optimal placement of the piezoelectric actuators in order to actuate the structure shape as close as possible to the desired one. The current research focus on the investigation of static shape control of intelligent shells using spatially distributed piezoelectric curve beam actuators. The finite element formulation of the piezoelectric model is briefly described. The piezoelectric curve beam element is then integrated into a collocated host shell element by using nodal displacement constraint equations. The linear least square method (LLSM) is employed to get the optimum voltage distributions in the control system so that the desired structure shape can be well matched. Furthermore, to find the optimal placement of the piezoelectric curve beam actuators, a genetic algorithm (GA) is introduced in the computation model as well as the consideration of the different objective functions. Numerical results are given to demonstrate the validity of the theoretical model and numerical algorithm developed.

Enhancing seismic performance of ductile moment frames with delayed wire-rope bracing using middle steel plate

  • Ghalandari, Akram;Ghasemi, Mohammad Reza;Dizangian, Babak
    • Steel and Composite Structures
    • /
    • 제28권2호
    • /
    • pp.139-147
    • /
    • 2018
  • Moment frames have considerable ductility against cyclic lateral loads and displacements; however, sometimes this feature causes the relative displacement to exceed the permissible limits. This issue can bring unfavorable hysteretic behavior on the frame due to the reduction in the stiffness and resistance against lateral loads. Most of common bracing systems usually control lateral displacements through increasing stiffness while result in decreasing the capacity for energy absorption. This has direct effect on hysteresis curves of moment frames. Therefore, a system that is capable of both having the capacity of energy absorption as well as controlling the displacements without a considerable increase in the stiffness is quite important. This paper investigates retrofitting of a single-storey steel moment frame using a delayed wire-rope bracing system equipped with the ductile middle steel plate. The steel plate is considered at the middle intersection of wire ropes, where it causes cables to be continuously in tension. This integrated system has the advantage of reducing considerable stiffness of the frame compared to cross bracing systems as a result of which it could also preserve the frame's energy absorption capacity. In this paper, FEM models of a delayed wire-rope bracing system equipped by steel plates with different geometries have been studied, validated, and compared with other researchers' laboratory test results.

원자간력 현미경의 자율교정법 (New Calibration Methods for improving the Accuracy of AFM)

  • 권현규;고영채
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.48-52
    • /
    • 2001
  • In this paper presents an accurate AFM used that is free from the Z-directional distortion of a servo actuator is described. Two mathematical correction methods by the in-situ self-calibrationare employed in this AFM. One is the method by the integration, and the other is the method by inverse function of the calibration curve. The in situ self-calibration method by the integration, the derivative of the calibration curve function of the PZT actuator is calculated from the profile measurement data sets which are obtained by repeating measurements after a small Z-directional shift. Input displacement at each sampling point is approximately estimated first by using a straight calibration line. The derivative is integrated with reference to the approximate input to obtain the approximate calibration curve. Then the approximation of the input value of each sampling point is improved using the obtained calibration curve. Next the integral of the derivative is improved using the newly estimated input values. As a result of repeating these improving process, the calibration curve converges to the correct one, and the distortion of the AFM image can be corrected. In the in situ self-calibration through evaluating the inverse function of the calibration curve, the profile measurement data sets were used during the data processing technique. Principles and experimental results of the two methods are presented.

  • PDF

국내외 판내부 지진기록을 이용한 한국 표준수직설계스펙트럼의 개발 (Development of Korean Standard Vertical Design Spectrum Based on the Domestic and Overseas Intra-plate Earthquake Records)

  • 김재관;김정한;이진호;허태민
    • 한국지진공학회논문집
    • /
    • 제20권6호
    • /
    • pp.413-424
    • /
    • 2016
  • The vertical design spectrum for Korea, which is known to belong to an intra-plate region, is developed from the ground motion records of the earthquakes occurred in Korea and overseas intra-plate regions. From the statistical analysis of the vertical response spectra, a mean plus one standard deviation spectrum in lognormal distribution is obtained. Regression analysis is performed on this curve to determine the shape of spectrum including transition periods. The developed design spectrum is valid for the estimation both spectral acceleration and displacement. The ratio of vertical to horizontal response spectrum for each record is calculated. Statistical analysis of the ratios rendered the vertical to horizontal ratio (V/H ratio). Subsequently the ratio between the peak vertical ground acceleration to the horizontal one is obtained.

도심 고층건물 지붕에서의 소형 풍력발전기 발전량 예측 (Estimation of wind power generation of micro wind turbine on the roof of high rise buildings in urban area)

  • 최형식;장호남
    • 신재생에너지
    • /
    • 제5권4호
    • /
    • pp.21-27
    • /
    • 2009
  • Potential yield of micro wind turbine on the roof of urban high rise buildings is estimated. Urban wind profile is modeled as logarithmic profile above the mean building height with roughness length 0.8, displacement 7.5 m. Mean wind velocity from the meteorological agency data at the hight of 50m is used. Wind velocity changes are simulated on the rectangular roof of 26, 45, 53 degree pitch and the circular roof by computational fluid dynamics and RNG k-$\varepsilon$ turbulence models. Wind velocity increased approximately by a factor of the order of 270 % on the 26 degree pitched roof. In the 100 m and 200 m high buildings, wind enhancement is greater at the front side than at the center of the building. In the building arrangement model wind velocity changes abruptly and it becomes wind gusts. When commercial wind turbines are installed on the building roof, average power and annual power generation enhanced by 3~4 times than normal wind velocity at 50m and 6 kw wind turbine can generate 1053 kwh per month on the 26 degree pitched roof at 50m height and sufficiently supply electrical power with 15 household for common electrical use and food waste disposer. However, power output will vary significantly by the wind conditions in the order of $\pm$ 20 %.

  • PDF

Force monitoring of steel cables using vision-based sensing technology: methodology and experimental verification

  • Ye, X.W.;Dong, C.Z.;Liu, T.
    • Smart Structures and Systems
    • /
    • 제18권3호
    • /
    • pp.585-599
    • /
    • 2016
  • Steel cables serve as the key structural components in long-span bridges, and the force state of the steel cable is deemed to be one of the most important determinant factors representing the safety condition of bridge structures. The disadvantages of traditional cable force measurement methods have been envisaged and development of an effective alternative is still desired. In the last decade, the vision-based sensing technology has been rapidly developed and broadly applied in the field of structural health monitoring (SHM). With the aid of vision-based multi-point structural displacement measurement method, monitoring of the tensile force of the steel cable can be realized. In this paper, a novel cable force monitoring system integrated with a multi-point pattern matching algorithm is developed. The feasibility and accuracy of the developed vision-based force monitoring system has been validated by conducting the uniaxial tensile tests of steel bars, steel wire ropes, and parallel strand cables on a universal testing machine (UTM) as well as a series of moving loading experiments on a scale arch bridge model. The comparative study of the experimental outcomes indicates that the results obtained by the vision-based system are consistent with those measured by the traditional method for cable force measurement.