• Title/Summary/Keyword: Integrated design environment

Search Result 1,031, Processing Time 0.038 seconds

Flexible Intelligent Exit Sign Management of Cloud-Connected Buildings

  • Lee, Minwoo;Mariappan, Vinayagam;Lee, Junghoon;Cho, Juphil;Cha, Jaesang
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.58-63
    • /
    • 2017
  • Emergencies and disasters can happen any time without any warning, and things can change and escalate very quickly, and often it is swift and decisive actions that make all the difference. It is a responsibility of the building facility management to ensure that a proven evacuation plan in place to cover various worst scenario to handled automatically inside the facility. To mapping out optimal safe escape routes is a straightforward undertaking, but does not necessarily guarantee residents the highest level of protection. The emergency evacuation navigation approach is a state-of-the-art that designed to evacuate human livings during an emergencies based on real-time decisions using live sensory data with pre-defined optimum path finding algorithm. The poor decision on causalities and guidance may apparently end the evacuation process and cannot then be remedied. This paper propose a cloud connected emergency evacuation system model to react dynamically to changes in the environment in emergency for safest emergency evacuation using IoT based emergency exit sign system. In the previous researches shows that the performance of optimal routing algorithms for evacuation purposes are more sensitive to the initial distribution of evacuees, the occupancy levels, and the type and level of emergency situations. The heuristic-based evacuees routing algorithms have a problem with the choice of certain parameters which causes evacuation process in real-time. Therefore, this paper proposes an evacuee routing algorithm that optimizes evacuation by making using high computational power of cloud servers. The proposed algorithm is evaluated via a cloud-based simulator with different "simulated casualties" are then re-routed using a Dijkstra's algorithm to obtain new safe emergency evacuation paths against guiding evacuees with a predetermined routing algorithm for them to emergency exits. The performance of proposed approach can be iterated as long as corrective action is still possible and give safe evacuation paths and dynamically configure the emergency exit signs to react for real-time instantaneous safe evacuation guidance.

The Improvement of Point Cloud Data Processing Program For Efficient Earthwork BIM Design (토공 BIM 설계 효율화를 위한 포인트 클라우드 데이터 처리 프로그램 개선에 관한 연구)

  • Kim, Heeyeon;Kim, Jeonghwan;Seo, Jongwon;Shim, Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.5
    • /
    • pp.55-63
    • /
    • 2020
  • Earthwork automation has emerged as a promising technology in the construction industry, and the application of earthwork automation technology is starting from the acquisition and processing of point cloud data of the site. Point cloud data has more than a million data due to vast extent of the construction site, and the processing time of the original point cloud data is critical because it takes tens or hundreds of hours to generate a Digital Terrain Model (DTM), and enhancement of the processing time can largely impact on the efficiency of the modeling. Currently, a benchmark program (BP) is actively used for the purpose of both point cloud data processing and BIM design as an integrated program in Korea, however, there are some aspects to be modified and refined. This study modified the BP, and developed an updated program by adopting a compile-based development environment, newly designed UI/UX, and OpenGL while maintaining existing PCD processing functions, and expended compatibility of the PCD file formats. We conducted a comparative test in terms of loading speed with different number of point cloud data, and the results showed that 92 to 99% performance increase was found in the developed program. This program can be used as a foundation for the development of a program that reduces the gap between design and construction by integrating PCD and earthwork BIM functions in the future.

Designing a Sustainable Energyscape - Based on the 'Sun-Garden' Project in Solaseado Solar Power Plant, Haenam - (지속 가능한 에너지스케이프의 설계 - 해남 솔라시도 태양광 발전단지 내 '태양의 정원' 설계안을 중심으로 -)

  • Kim, Bo kyung;Lee, Byung Chul
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.3
    • /
    • pp.103-113
    • /
    • 2024
  • This study is based on the design project of 'Sun-Garden' within the Solaseado Solar Power Plant located in Solaseado, which is a New City being developed in Haenam, Jeollanam-do. The purpose of this study is to create an integrated and sustainable energyscape that harmonizes energy infrastructure with the natural environment, while supporting the city's carbon neutrality agenda. To achieve this, design principles were established by considering three key aspects. The first aspect is economic, which seeks to create multifunctional spaces that integrate nature and technology, pursuing long-term sustainability while generating additional economic value. The second aspect is natural, emphasizing the creation of planting environments that conserve and enhance ecosystems, introduce region-specific species, and maintain ecosystem services and sustainable resource use. The third aspect is landscape, offering sensory and educational experiences to visitors and functioning as a landmark that symbolizes the carbon-neutral garden city of Solaseado through the aesthetic harmony of nature and technology. Through the creation of the 'Sun-Garden,' the Solaseado Solar Power Plant exemplifies a sustainable energyscape development model that merges economic, environmental, and landscape aspects beyond the conventional energy production facility. This project is expected to provide guidelines and implications for future energy infrastructure design, contributing to global energy transition efforts.

A Basis Study on the Optimal Design of the Integrated PM/NOx Reduction Device (일체형 PM/NOx 동시저감장치의 최적 설계에 대한 기초 연구)

  • Choe, Su-Jeong;Pham, Van Chien;Lee, Won-Ju;Kim, Jun-Soo;Kim, Jeong-Kuk;Park, Hoyong;Lim, In Gweon;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1092-1099
    • /
    • 2022
  • Research on exhaust aftertreatment devices to reduce air pollutants and greenhouse gas emissions is being actively conducted. However, in the case of the particulate matters/nitrogen oxides (PM/NOx) simultaneous reduction device for ships, the problem of back pressure on the diesel engine and replacement of the filter carrier is occurring. In this study, for the optimal design of the integrated device that can simultaneously reduce PM/NOx, an appropriate standard was presented by studying the flow inside the device and change in back pressure through the inlet/outlet pressure. Ansys Fluent was used to apply porous media conditions to a diesel particulate filter (DPF) and selective catalytic reduction (SCR) by setting porosity to 30%, 40%, 50%, 60%, and 70%. In addition, the ef ect on back pressure was analyzed by applying the inlet velocity according to the engine load to 7.4 m/s, 10.3 m/s, 13.1 m/s, and 26.2 m/s as boundary conditions. As a result of a computational fluid dynamics analysis, the rate of change for back pressure by changing the inlet velocity was greater than when inlet temperature was changed, and the maximum rate of change was 27.4 mbar. This was evaluated as a suitable device for ships of 1800kW because the back pressure in all boundary conditions did not exceed the classification standard of 68mbar.

Screening of Effective Medium Composition for the Cultivation of Lactobacillus plantarum and Lactobacillus reuteri Using Statistical Methods (통계적 방법을 이용한 Lactobacillus plantarum과 Lactobacillus reuteri 의 유효 배지 성분의 탐색)

  • Kim, Dong-Woon;Cho, Sang-Buem;Kim, Young-Hwa;Lee, Sung-Daw;Jung, Hyun-Jung;Kim, Sang-Ho;Cho, Kyu-Ho;Sa, Soo-Jin;Kim, In-Cheul;Won, Mi-Young;Kim, Su-Ok;Kim, Soo-Ki
    • Journal of Life Science
    • /
    • v.22 no.5
    • /
    • pp.575-581
    • /
    • 2012
  • This study was conducted to develop an economical optimum medium composition for the mass production of $Lactobacillus$ $plantarum$ and $Lactobacillus$ $reuteri$, livestock probiotics. Medium ingredient factors were selected on the basis of MRS broth composition, and the 15 ingredient variables were as follows: sucrose, glucose, molasses, yeast extract, corn steep liquor, soy peptone, dipotassium phosphate, manganese chloride, magnesium chloride, tween 80, sodium chloride, sodium acetate, ammonium citrate, sodium sulphate, and ferrous sulphate. The Plackett Burman design, consisting of 20 runs, was employed for the analysis of ingredient effects on cell growth of $L.$ $plantarum$ and $L.$ $reuteri$. As a result, sucrose, glucose, molasses, yeast extract, corn steep liquor, soy peptone, sodium acetate, and ammonium citrate positively influenced the growth of $L.$ $plantarum$. Additionally, yeast extract, soy peptone, $K_2PHO_4$, and tween 80 positively influenced the growth of $L.$ $reuteri$. Positive effects were found from sucrose, yeast extract, and soy peptone in the integrated analysis of the effects of both $L.$ $plantarum$ and $L.$ $reuteri$. Finally, effective medium components for both strains were found as follows: sucrose (20.0 g/l), glucose (5.0 g/l), soy peptone (11.0 g/l), yeast extract (5.0 g/l), $K_2PHO_4$ (0.2 g/l), $CH_3COONa$ (2 g/l), and $MgCl_2$ (0.02 g/l).

Development of Indicators to Assess the Quality of Ubiquitous-Ecological Cities (유비쿼터스 에코시티 평가지표 개발 및 적용 연구)

  • Kim, Han-Saem;Jeong, Yeun-Woo
    • Land and Housing Review
    • /
    • v.2 no.2
    • /
    • pp.111-123
    • /
    • 2011
  • A Ubiquitous-Ecological City (U-Eco City) is the new urban paradigm integrated with ubiquitous-city (U-City) connecting the high-tech IT technology to the urvan space with the concept of the sustainable eco-city. As a U-Eco City is attempted for the first time domestically and internationally, there is insufficient discussions for its develoment goal, planned design proposal, technology and service element and others. Even if there are plans to build up it, policy and technology, service structuring business and others, it is difficult to assess how it would bring the efficacy. Therefore, the purpose of this study is to present the indicators system to assess a U-Eco City. The results of this study revealed the following; First, the conceptual framework, which was established to achieve sustainable urban quality, can be suggested by establishing its notion of the U-Eco City. The concept of a U-Eco City as established in this study suggests that the economic development in growth-oriented level has to be conducted not only quality of urban environment but also in terms of sustainable to consider the complex impact of various development; Secondly, the developed assessment system has heightened the completeness as the evaluation index through the attitude survey. As a result of questionnaire survey with the subject of specialists and interested party of this study, the urban qualitative aspect is formulated for the stability as a relatively important aspect. For the urban continuity aspect, society, environment and economy have all similar importance, but the environment element was shown to be highest. And finally, subject area was selected on the basis of the evaluation system and the analysis was made on the basis of the implementation design plan of the area. As a result of the assessment, safety and economy have shown to be high. This is indirectly indicated for the priority in economic growth driven development plan unlike the importance of environmental continuity obtained through the attitude survey. When planning on urban development, there is a need for supplementing the environment part and it has to present the connection plan between the economic growth and environmental continuity.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014 (설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.

Design and Implementation of a Power-Saving Management System using Intelligent Scheduler based on RFID/USN Technology (RFID/USN 기술 기반의 지능형 스케줄러를 이용한 절전관리 시스템 설계 및 구현)

  • Jeong, Kyu-Seuck;Choi, Sung-Chul;Jeong, Woo-Jeong;Kim, Tae-Ho;Kim, Jong-Heon;Seo, Dong-Min;Park, Yong-Hun;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.64-76
    • /
    • 2009
  • Recently, the ubiquitous environment and the practical technology associated with it become more popular topic along with the rapid development of wireless technologies. The necessity of the automated system based on the ubiquitous environment has been increasing when the concept of the ubiquitous is integrated into the fields of existing IT. Also, the necessity of formulating a power-saving plan on large buildings and public institutions is gathering strength because of a raise in exchange rates and high oil prices. In this paper, to efficiently manage the power consumption of the electronic machine such as electric lights, electric heaters, and air conditioners in a building, power-saving manage- ment system using RFID/USN technologies is proposed. Proposed system controls the electric machine and monitor it's condition by RFID and collects the real time information about the surrounding and the power consumption of the electric machine by USN. Especially, proposed system analyzes the real time information and supports the intelligent scheduler with the best power-saving. Finally, this paper shows the difference between proposed system and existing system and establishes thereality of our system through experiments in variety environments.

Target Identification for Metabolic Engineering: Incorporation of Metabolome and Transcriptome Strategies to Better Understand Metabolic Fluxes

  • Lindley, Nic
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2004.06a
    • /
    • pp.60-61
    • /
    • 2004
  • Metabolic engineering is now a well established discipline, used extensively to determine and execute rational strategies of strain development to improve the performance of micro-organisms employed in industrial fermentations. The basic principle of this approach is that performance of the microbial catalyst should be adequately characterised metabolically so as to clearlyidentify the metabolic network constraints, thereby identifying the most probable targets for genetic engineering and the extent to which improvements can be realistically achieved. In order to harness correctly this potential, it is clear that the physiological analysis of each strain studied needs to be undertaken under conditions as close as possible to the physico-chemical environment in which the strain evolves within the full-scale process. Furthermore, this analysis needs to be undertaken throughoutthe entire fermentation so as to take into account the changing environment in an essentially dynamic situation in which metabolic stress is accentuated by the microbial activity itself, leading to increasingly important stress response at a metabolic level. All too often these industrial fermentation constraints are overlooked, leading to identification of targets whose validity within the industrial context is at best limited. Thus the conceptual error is linked to experimental design rather than inadequate methodology. New tools are becoming available which open up new possibilities in metabolic engineering and the characterisation of complex metabolic networks. Traditionally metabolic analysis was targeted towards pre-identified genes and their corresponding enzymatic activities within pre-selected metabolic pathways. Those pathways not included at the onset were intrinsically removed from the network giving a fundamentally localised vision of pathway functionality. New tools from genome research extend this reductive approach so as to include the global characteristics of a given biological model which can now be seen as an integrated functional unit rather than a specific sub-group of biochemical reactions, thereby facilitating the resolution of complexnetworks whose exact composition cannot be estimated at the onset. This global overview of whole cell physiology enables new targets to be identified which would classically not have been suspected previously. Of course, as with all powerful analytical tools, post-genomic technology must be used carefully so as to avoid expensive errors. This is not always the case and the data obtained need to be examined carefully to avoid embarking on the study of artefacts due to poor understanding of cell biology. These basic developments and the underlying concepts will be illustrated with examples from the author's laboratory concerning the industrial production of commodity chemicals using a number of industrially important bacteria. The different levels of possibleinvestigation and the extent to which the data can be extrapolated will be highlighted together with the extent to which realistic yield targets can be attained. Genetic engineering strategies and the performance of the resulting strains will be examined within the context of the prevailing experimental conditions encountered in the industrial fermentor. Examples used will include the production of amino acids, vitamins and polysaccharides. In each case metabolic constraints can be identified and the extent to which performance can be enhanced predicted

  • PDF

Study on the Integrated SCM Performance Formation Model through Supplier Development Project and Asset Specificity (공급자개발계획과 자산전용성을 통한 통합적 SCM성과형성모델에 관한 연구)

  • Song, Jang-Gwen;Oh, Se-Gu
    • Journal of Distribution Science
    • /
    • v.12 no.10
    • /
    • pp.85-97
    • /
    • 2014
  • Purpose - This study aims to clarify through which process asset specificity and supplier development project (SDP) affect performance. Cooperation, partnership, the level of information exchange, and the importance of information sharing are considered significant variables as mediators related to the process. Finally, the performance formation model of the supply chain through asset specificity and supplier development project would be suggested as being a result of this study. Research design, data, and methodology - Data collection was as follows: questionnaires were distributed to 250 companies that have business ties with H Company. The empirical study to test our hypothesis was based on statistical analysis (using SPSS 19.0 and AMOS 19.0). The hypothesis of this paper is that the asset specificity and supplier development project variables have positive effects on the following variables: mediators such as cooperation and partnership (reliability and dependence); and the cooperation and partnership variables have a positive effect on the following variables: level of information sharing, the importance of information sharing, and level of information sharing; the importance of information sharing has a positive effect on supply chain performance. We tested our hypothesized model utilizing path analysis with latent variables. Results - First, it was found that asset specificity has significant positive effects on cooperation (H1), reliability (H2), and dependability (H3). Second, it was proved that the level of comprehension on the purpose of SDP has positive effects significantly on cooperation (H4), reliability (H5), and dependability (H6). Third, the hypotheses related to cooperation were all significantly accepted. The relationships of cooperation with the level (H7) and importance (H8) of information sharing were significant. Fourth, the hypotheses related to reliability were all significantly accepted. The relationships of reliability with the level (H9) and importance (H10) of information sharing were significant. In terms of dependability, however, the hypotheses were partially accepted. The effect of dependability was significant on the importance of information sharing (H12), but insignificant on the level of information sharing (H11). Finally, the causal relationships from the level of information sharing to SCM performance (H13) and from the importance of information sharing to SCM performance (H14) were both significantly accepted. Conclusion - First, with rapid changes in the business environment, enterprises should acquire the right information to properly implement SCM. For successful SCM, firms should understand the supplier development project. Second, asset specificity and the level of comprehension on SDP have significant effects both on cooperation and partnership (reliability and dependability). Third, mediators such as cooperation, reliability, and dependability significantly affect the level and importance of information sharing. Fourth, the level and importance of information sharing have significant impacts on SCM performance. This paper makes a meaningful contribution to further the understanding of how SDP affects SCM performance. Finally, successful SCM performance is achieved by information sharing through a collaborative environment and partnership (confidence & dependence) rather than by investing only in setting up an information system.