DOI QR코드

DOI QR Code

Screening of Effective Medium Composition for the Cultivation of Lactobacillus plantarum and Lactobacillus reuteri Using Statistical Methods

통계적 방법을 이용한 Lactobacillus plantarum과 Lactobacillus reuteri 의 유효 배지 성분의 탐색

  • Kim, Dong-Woon (National Institute of Animal Science, RDA) ;
  • Cho, Sang-Buem (Department of Animal Science, Chonbuk National University) ;
  • Kim, Young-Hwa (National Institute of Animal Science, RDA) ;
  • Lee, Sung-Daw (National Institute of Animal Science, RDA) ;
  • Jung, Hyun-Jung (National Institute of Animal Science, RDA) ;
  • Kim, Sang-Ho (National Institute of Animal Science, RDA) ;
  • Cho, Kyu-Ho (National Institute of Animal Science, RDA) ;
  • Sa, Soo-Jin (National Institute of Animal Science, RDA) ;
  • Kim, In-Cheul (National Institute of Animal Science, RDA) ;
  • Won, Mi-Young (Department of Animal Science and Environment, Konkuk University) ;
  • Kim, Su-Ok (Department of Animal Science and Environment, Konkuk University) ;
  • Kim, Soo-Ki (Department of Animal Science and Environment, Konkuk University)
  • Received : 2011.11.10
  • Accepted : 2012.04.24
  • Published : 2012.05.30

Abstract

This study was conducted to develop an economical optimum medium composition for the mass production of $Lactobacillus$ $plantarum$ and $Lactobacillus$ $reuteri$, livestock probiotics. Medium ingredient factors were selected on the basis of MRS broth composition, and the 15 ingredient variables were as follows: sucrose, glucose, molasses, yeast extract, corn steep liquor, soy peptone, dipotassium phosphate, manganese chloride, magnesium chloride, tween 80, sodium chloride, sodium acetate, ammonium citrate, sodium sulphate, and ferrous sulphate. The Plackett Burman design, consisting of 20 runs, was employed for the analysis of ingredient effects on cell growth of $L.$ $plantarum$ and $L.$ $reuteri$. As a result, sucrose, glucose, molasses, yeast extract, corn steep liquor, soy peptone, sodium acetate, and ammonium citrate positively influenced the growth of $L.$ $plantarum$. Additionally, yeast extract, soy peptone, $K_2PHO_4$, and tween 80 positively influenced the growth of $L.$ $reuteri$. Positive effects were found from sucrose, yeast extract, and soy peptone in the integrated analysis of the effects of both $L.$ $plantarum$ and $L.$ $reuteri$. Finally, effective medium components for both strains were found as follows: sucrose (20.0 g/l), glucose (5.0 g/l), soy peptone (11.0 g/l), yeast extract (5.0 g/l), $K_2PHO_4$ (0.2 g/l), $CH_3COONa$ (2 g/l), and $MgCl_2$ (0.02 g/l).

본 연구는 가축용 생균제로서 이용성이 우수한 $Lactobacillus$ $plantarum$$Lactobacillus$ $reuteri$의 대량생산을 위한 경제적 최적 배지조성을 도출하기 위하여 수행되었다. 두 균주의 배양을 위한 배지성분 요인들은 유산균 배지로 알려진 MRS broth를 기준으로 하여, sucrose, glucose, molasses, yeast extract, corn steep liquor, soy peptone, dipotassium phosphate, manganese chloride, magnesium chloride, tween 80, sodium chloride, sodium acetate, ammonium citrate, sodium sulphate 및 ferrous sulphate 등 총 15가지를 선택하였다. 각 배지성분들이 각 균주들의 세포성장에 미치는 요인분석은 20개의 실험으로 구성된 Plackett-Burman design 방법을 이용하여 분석하였다. 그 결과 $L.$ $plantarum$의 성장에 있어서는 sucrose, glucose, molasses, yeast extract, corn steep liquor, soy peptone, sodium acetate, ammonium citrate 등이 긍정적인 효과(positive effect)를 나타내었다. $L.$ $reuteri$의 경우, yeast extract, soy peptone, $K_2PHO_4$, tween 80에서 수준간의 격차가 큰 긍정적인 효과가 나타났다. 두 가지 균주들에서 얻어진 표준화된 통합적 효과의 주 효과를 분석한 결과, sucrose, yeast extract, soy peptone에서 긍정적인 효과가 나타났다. 최종적으로 $L.$ $plantarum$$L.$ $reuteri$ 두 균주에 공통적으로 적용할 수 있는 유효 배지 성분들로 sucrose (20.0 g/l), glucose (5.0 g/l), soy peptone (11.0 g/l), yeast extract (5.0 g/l), $K_2PHO_4$ (0.2 g/l), $CH_3COONa$ (2 g/l) 및 $MgCl_2$ (0.02 g/l)를 선택하였다.

Keywords

References

  1. Abdel-Fattah, Y. 2002. Optimization of thermostable lipase production from a thermophilic Geobacillus sp. using Box-Behnken experimental design. Biotechnol. Lett. 24, 1217-1222. https://doi.org/10.1023/A:1016167416712
  2. Bas, D. and Boyaci, I. 2007. Modeling and Optimization I : Usability of response surface methodology. J. Food Eng. 78, 836-845. https://doi.org/10.1016/j.jfoodeng.2005.11.024
  3. Beharka, A. A. and Nagaraja, T. G. 1998. Effect of Aspergillus oryzae extract alone or in combination with antimicrobial compounds on ruminal bacteria. J. Dairy Sci. 81, 1591-1598. https://doi.org/10.3168/jds.S0022-0302(98)75725-X
  4. Chauhan, K., Trivedi, U. and Patel, K. C. 2007. Statistical screening of medium components by Plackett-Burman design for lactic acid production by Lactobacillus sp. KCP01 using date juice. Bioresour. Technol. 98, 98-103. https://doi.org/10.1016/j.biortech.2005.11.017
  5. Chhaya, U. and Gupte, A. 2010. Optimization of media components for laccase production by litter dwelling fungal isolate Fusarium incarnatum LD-3. J. Basic Microbiol. 50, 1-9. https://doi.org/10.1002/jobm.201090001
  6. Cho, J. K., Li, G. H., Cho, S. J., Yoon, Y. C., Hwang, S. G., Heo, K. C. and Choe, I. S. 2007. The identification and physiological properties of Lactobacillus plantrum JK-01 isolated from Kimchi. Korean J. Food Sci. Ani. Resour. 27, 363-370. https://doi.org/10.5851/kosfa.2007.27.3.363
  7. Davis, M. E., Parrott, T. D., Brown, C., de Rodas, B. Z., Johnson, Z. B., Maxwell, C. V. and Rehberger, T. 2008. Effect of a Bacillus-based direct-fed microbial feed supplement on growth performance and pen cleaning characteristics of growing-finishing pigs. J. Anim. Sci. 86, 1459-1467. https://doi.org/10.2527/jas.2007-0603
  8. Desnoyers, M., Giger-Reverdin, S., Bertin, G., Duvaux-Ponter, C. and Sauvant, D. 2009. Meta-analysis of the influence of Saccharomyces cerevisiae supplementation on ruminal parameters and milk production of ruminants. J. Dairy Sci. 92, 1620-1632. https://doi.org/10.3168/jds.2008-1414
  9. Gao, X., Qiao, S. and Lu, W. 2009. Determination of an economical medium for growth of Lactobacillus fermentum using response surface methodology. Lett. Appl. Microbiol. 49, 556-561. https://doi.org/10.1111/j.1472-765X.2009.02705.x
  10. Jang, Y. D., Oh, H. K., Piao, L. G., Choi, H. D., Yun, J. H. and Kim, Y. Y. 2009. Evaluation of probiotics as an alternative to antibiotic on growth performance, nutrient digestibility, occurrence of diarrhea and immune response in weaning pigs. J. Anim. Sci. Technol. (Kor.) 51, 25-32. https://doi.org/10.5187/JAST.2009.51.1.025
  11. Jung, J. H., Hong, S. M., Kim, H. J., Meng,Q. W. and Kim, I. H. 2010. Effect of probiotics in diet on growth performance, nutrient digestibility, fecal microbial count, noxious gases emission from the feces, and blood profile in early-finishing pigs. J. Anim. Sci. Technol. (Kor.) 52, 23-28. https://doi.org/10.5187/JAST.2010.52.1.023
  12. Kim, J. R., Jung, H. Y., Lee, N. K., Rhim, S. L. and Paik, H. D. 2006. Isolation, identification, and probiotic properties of Lactobacillus reuteri HY701 from human feces. Food Sci. Biotechnol. 15, 677-682.
  13. Kim, D. W., Kim, J. H., Kang, G. H., Kang, H. K., Lee, S. J., Lee, W. J. and Kim, S. H. 2008. Study on intestinal viability and optimum feeding method of Lactobacillus in broiler chickens. J. Anim. Sci. Technol. 50, 807-818. https://doi.org/10.5187/JAST.2008.50.6.807
  14. Kim, S. H., Kim, D. W., Park, S. Y., Kim, J. H., Kang, G. H., Kang, H. K., Yu, D. J., Na, J. C. and Lee, S. J. 2008. Effect of dietary Lactobacillus on growth performance, in testinal microflora, development of ileal villi, and intestinal mucosa in broiler chickens. J. Anim. Sci. & Technol. (Kor.) 50, 667-676. https://doi.org/10.5187/JAST.2008.50.5.667
  15. Krehbiel, C. R., Rust, S. R., Zhang, G. and Gilliland, S. E. 2003. Bacterial direct-fed microbials in ruminant diets: Performance response and mode of action. J. Anim. Sci. 81(E.Suppl.2), E120-E132.
  16. Lessard, M., Dupuis, M., Gagnon, N., Nadeau, E., Matte, J. J., Goulet, J. and Fairbrother, J. M. 2009. Administration of Pediococcus acidilactici or Saccharomyces cerevisiae boulardii modulates development of porcine mucosal immunity and reduces intestinal bacterial translocation after Escherichia coli challenge. J. Anim. Sci. 87, 922-934.
  17. Miller, A. and Sitter, R. R. 2001. Using the folded-over 12-run plackett-burman design to consider interactions. Technometrics 43, 44-55. https://doi.org/10.1198/00401700152404318
  18. Moon, S. B. 2010. Structural Equation Modelling. pp. 84-85, Hwak Ji Sa. Seoul, Korea.
  19. Powell, J., Witthuhn, E., Todorov, R. C. and Dicks, L. N. T. 2007. Characterization of bacteriocin ST8KF produced by a kefir isolate Lactobacillus plantarum ST8KF. Int. Dairy J. 17, 190-198. https://doi.org/10.1016/j.idairyj.2006.02.012
  20. Swyers, K. L., Burk, A. O., Hartsock, T. G., Ungerfeld, E. M. and J. L. Shelton. 2008. Effects of direct-fed microbial supplementation on digestibility and fermentation end-products in horses fed low- and high-starch concentrates. J. Anim. Sci. 86, 2596-2608. https://doi.org/10.2527/jas.2007-0608
  21. Tallon, R., Bressollier, P. and Urdaci, M. C. 2003. Isolation and characterization of two exopolysaccharides produced by Lactobacillus plantarum EP56. Res. Microbiol. 154, 705-712. https://doi.org/10.1016/j.resmic.2003.09.006
  22. Verellen, T. L. J., Bruggeman, G., Reene, C. A., Dicks, L. M. T. and Vandamme, E. J. 1998. Fermentation optimization of plantaricin 423, a bacteriocin produced by Lactobacillus plantarum 423. J. Ferment. Bioeng. 86, 174-179. https://doi.org/10.1016/S0922-338X(98)80057-3