• Title/Summary/Keyword: Integrated Navigation System

Search Result 545, Processing Time 0.024 seconds

WNS/GPS Integrated System Using Tightly Coupled Method (강결합 기법을 이용한 WNS/GPS 결합 시스템)

  • 조성윤;박찬국
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.12
    • /
    • pp.1067-1075
    • /
    • 2002
  • The system error model for the compensation of the low-cost personal navigation system is derived and the error compensation method using GPS is also proposed. The walking navigation system (WNS) that calculates navigation information through walking detection has small error than INS, but the error also increases with time. In order to improve reliability of the system regardless of time, WNS is integrated with GPS. Since WNS is usually used in urban area, the blockage of CPS signal is frequently occurred. Therefore tightly coupled Kalman filter is used for the integration of WNS and GPS. In this paper, the system model for the design of tightly coupled Kかm filter is designed and measurement is linearized in consideration of moving distance error. It is shown by Monte Carlo simulation that the error is bounded even through the number of visible satellite is less than 4.

Observability Analysis of INS/GNSS System for Vehicles Moving with a Large Pitch Angle Change (피치각 변화가 큰 궤적에서의 INS/GNSS 통합항법 시스템 가관측성 분석)

  • Kim, Hyun-seok;Baek, Seung-jun;Kim, Hyung-Soo;Jo, Min-Su
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.3
    • /
    • pp.220-227
    • /
    • 2018
  • The most widely used method for constructing an inertial navigation system (INS)/global navigation satellite system (GNSS) coupling system is to construct an integrated navigation system using a Kalman filter. However, depending on the trajectory, non-observable state variables may be generated. In this case, the state variables are not estimated. To solve this problem, a integrated navigation system is constructed and then an observability analysis is performed. In this paper, a 24th order position-matched Kalman filter is defined to design an INS/GNSS integrated navigation system for vehicles moving with a large pitch angle change. To verify the appropriateness of the error state variables applied to the Kalman filter, an observability analysis was performed. The trajectory was divided into five segments, and the piece-wise constant system (PWCS) was assumed for each segment, and the results were analytically analyzed. The analytical results and the simulation results confirm that the error state parameters of the Kalman filter are well-designed to the estimation side.

M&S Software Design of Multiple Radio Positioning Integration System (다중 전파측위 융복합 시스템의 M&S 소프트웨어 설계)

  • Koo, Moonsuk;Kim, YoungJoon;Choi, Kwang-Ho;So, Hyoungmin;Oh, Sang Heon;Kim, Seong-Cheol;Lee, Hyung-Keun;Hwang, Dong-Hwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.602-611
    • /
    • 2015
  • Even though GNSS provides highly accurate navigation information all over the world, it is vulnerable to jamming in the electronic warfare due to its weak signal power. The United States and Korea have plans to use terrestrial navigation systems as back-up systems during outage of GNSS. In order to develop back-up systems of GNSS, an M&S software platform is necessary for performance evaluation of various vehicle trajectories and integrated navigation systems. In this paper a design method of an M&S software is proposed for evaluation of multiple radio positioning integration systems. The proposed M&S software consists of a navigation environment generation part, a navigation algorithm part, a GUI part and a coverage analysis part. Effectiveness of the proposed design method is shown by implementing an M&S software for the GPS, DME and eLoran navigation systems.

A BIM and UWB integrated Mobile Robot Navigation System for Indoor Position Tracking Applications

  • Park, JeeWoong;Cho, Yong K.;Martinez, Diego
    • Journal of Construction Engineering and Project Management
    • /
    • v.6 no.2
    • /
    • pp.30-39
    • /
    • 2016
  • This research presents the development of a self-governing mobile robot navigation system for indoor construction applications. This self-governing robot navigation system integrated robot control units, various positioning techniques including a dead-reckoning system, a UWB platform and motion sensors, with a BIM path planner solution. Various algorithms and error correction methods have been tested for all the employed sensors and other components to improve the positioning and navigation capability of the system. The research demonstrated that the path planner utilizing a BIM model as a navigation site map could effectively extract an efficient path for the robot, and could be executed in a real-time application for construction environments. Several navigation strategies with a mobile robot were tested with various combinations of localization sensors including wheel encoders, sonar/infrared/thermal proximity sensors, motion sensors, a digital compass, and UWB. The system successfully demonstrated the ability to plan an efficient path for robot's movement and properly navigate through the planned path to reach the specified destination in a complex indoor construction site. The findings can be adopted to several potential construction or manufacturing applications such as robotic material delivery, inspection, and onsite security.

Research on Navigation-aids Information System

  • Zhang, Xing-Gu;Peng, Guo-Jun;Xiang, Lu;Chen, Xin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.56-62
    • /
    • 2006
  • This thesis researches on the application of computer, modern communication, GIS, GPS, AIS and World-Wide-Web in the field of navigation-aids information system, and has realized an integrated system consisted of navigation-aids information GIS platform, navigation-aids monitoring system and navigation-aids information distribution system. This system has strong integration capability, and has realized navigation-aids information distribution based on WEBGIS at the first time. It strongly promotes navigation-aids daily management and maintenance, and this system provides technique guarantee fur ships and marine departments to acquire navigation-aids information in time, by rule and line expediently.

  • PDF

Navigation Algorithm for Electro-Optical Tracking System of High Speed and High Maneuvering Vehicle with Compensation of Measurement Time-Delay (측정치 시간지연을 보상한 고속, 고기동 항체용 전자광학 추적장비 항법 알고리즘)

  • Son, Jae Hoon;Choi, Woo Jin;Oh, Sang Heon;Lee, Sang Jeong;Hwang, Dong-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.12
    • /
    • pp.1632-1640
    • /
    • 2021
  • In order to improve target tracking performance of the conventional electro-optical tracking system (EOTS) in the high speed and high maneuvering vehicle, an EOTS navigation algorithm is proposed, in which an inertial measurement unit(IMU) is included and navigation results of the vehicle are used. The proposed algorithm integrates vehicle's navigation results and the IMU and the time-delay and the scale factor errors are augmented into the integrated Kalman filter. In order to evaluate the proposed navigation algorithm, a land vehicle navigation experiments were performed a navigation grade navigation system, TALIN4000 and a tactical grade IMU, LN-200 and a equipment for roll motion were loaded on the land vehicle. The performance evaluation results show that the proposed algorithm effecting works in high maneuvering environment and for the time-delay.

Maritime Safety System in China

  • Lin, Yunai
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1997.10a
    • /
    • pp.35-41
    • /
    • 1997
  • China has integrated maritime safety system which positively and effectively ensures safe navigation and environmental protection. This paper gives brief account on maritime safety rules and regulations, adminstrations and management mechanism, navigation aids and facilities, maritime communication and GMDSS etc. China is a developing country with fast economical growth. With a long coastline of 18,000 kilometers, and 5,000 more islands, China has a fairly developed shipping industry. China also sits in IMO Council as A member. In China , there are over 200 ports with an annual hadnling capacity of over 10,000 tons of cargo ; there are over 4,000 coasters and ocean-going ships with more than 3 million seafarers of which 1/3 being officers ; there are an aggregate gross tonnage 17 million gt for merchant ships. China ranks No.5 shipping country in the world as shown by Lloyd's Maritime Information Services Ltd. 1995. The Chinese shipping industry plays an important role in both domestic transportation and foreign trade. The Chinese government always attaches great importance to maritime safety . Since 1949, and from the adoption of reform-opening policy, China has gradually formed an integrated maritime safety system.

  • PDF

Research on Core Function of Autonomous Vessels for INS (통합항해시스템(INS) 적용에 필요한 자율운항 선박 핵심 기능 연구)

  • Kim, Beom-Jun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.05a
    • /
    • pp.158-159
    • /
    • 2018
  • It analyzed the domestic and overseas trends related to smart ship development in the world and identifies key functions required for smart vessels, especially autonomous vessels, and introduces key technologies that can be utilized in the development of INS(Integrated Navigation System) for autonomous vessels.

  • PDF

A Design of the IMM Filter for Improving Position Error of the INS / GPS Integrated System (INS/GPS 통합 항법 시스템의 위치 오차 개선을 위한 IMM 필터 설계)

  • Baek, Seung-jun
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.3
    • /
    • pp.221-227
    • /
    • 2019
  • In this paper, interacting multiple model (IMM) filter was designed that guarantees a stable navigation performance even in the unstable satellite navigation position. In order to design IMM filter in INS / GPS integrated navigation system, sub filter of the IMM filter is defined as Kalman filter. In the IMM filter configuration, two subfilters are determined. Each Kalman filter defines the six-teenth state composed of position, velocity, attitude, and sensor error from the INS error equation and the states additionally derived in case of the coloured measurement noise. In order to verify the performance of the proposed filter, we compared the performance how the filter works in the presence of arbitrary error in GPS navigation solution. The Monte Carlo simulation was performed 100 times and the results were compared with the root mean square(RMS). The results show that the proposed method is stable against errors and show fast convergence.

Test and Integration of Location Sensors for Position Determination in a Pedestrian Navigation System

  • Retscher, Guenther;Thienelt, Michael
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.251-256
    • /
    • 2006
  • In the work package 'Integrated Positioning' of the research project NAVIO (Pedestrian Navigation Systems in Combined Indoor/Outdoor Environements) we are dealing with the navigation and guidance of visitors of our University. Thereby start points are public transport stops in the surroundings of the Vienna University of Technology and the user of the system should be guided to certain office rooms or persons. For the position determination of the user different location sensors are employed, i.e., for outdoor positioning GPS and dead reckoning sensors such as a digital compass and gyro for heading determination and accelerometers for the determination of the travelled distance as well as a barometric pressure sensor for altitude determination and for indoor areas location determination using WiFi fingerprinting. All sensors and positioning methods are combined and integrated using a Kalman filter approach. Then an optimal estimate of the current location of the user is obtained using the filter. To perform an adequate weighting of the sensors in the stochastic filter model, the sensor characteristics and their performance was investigated in several tests. The tests were performed in different environments either with free satellite visibility or in urban canyons as well as inside of buildings. The tests have shown that it is possible to determine the user's location continuously with the required precision and that the selected sensors provide a good performance and high reliability. Selected tests results and our approach will be presented in the paper.

  • PDF