• Title/Summary/Keyword: Integrated Navigation System

Search Result 545, Processing Time 0.025 seconds

Effect of Vibration Suppression Device for GNSS/INS Integrated Navigation System Mounted on Self-Driving Vehicle

  • Park, Dong-Hyuk;Ahn, Sang-Hoon;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.2
    • /
    • pp.119-126
    • /
    • 2022
  • This paper presents a method to reduce the vibration-induced noise effect of an inertial measurement device mounted on a self-driving vehicle. The inertial sensor used in the GNSS/INS integrated navigation system of a self-driving vehicle is fixed directly on the chassis of vehicle body so that its navigation output is affected by the vibration of the vehicle's engine, resulting in the degradation of the navigational performance. Therefore, these effects must be considered when mounting the inertial sensor. In order to solve this problem, this paper proposes to use an in-house manufactured vibration suppression device and analyzes its impact on reducing the vibration effect. Experimental test results in a static scenario show that the vibration-induced noise effect is more clearly observed in the lateral direction of the vehicle, but can be effectively suppressed by using the proposed vibration suppression device compared to the case without it. In addition, the dynamic positioning test scenario shows the position, speed, and posture errors are reduced to 74%, 67%, and 14% levels, respectively.

Time Delay Error Analysis and Compensation Method of Integrated Navigation System for Aircraft Store (항공장착물의 전달정렬을 위한 통합항법장치 시간 지연 오차 분석 및 보상 기법)

  • Seo, Byung-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.7
    • /
    • pp.592-601
    • /
    • 2018
  • The GPS/INS integrated navigation system, which is one of the electronic equipments mounted on military aircraft store, can not directly receive GPS signals by the aircraft wing before the drop, so GPS navigation data is received from the aircraft and used for filter integration, afterwards, the integrated navigation is performed using the GPS information directly received through the antenna. In this case, it is possible to operate the mount in old aircraft without any modification of the aircraft when GPS data is transmitted using wireless. However, the delay occurs while the aircraft navigation data is transmitted to the integrated navigation filter of the aircraft store via wireless, which affects the time synchronization of the GPS measurement and the INS information, affecting the integrated navigation performance. In this paper, an algorithm to analyze and compensate the effect of generation and transmission delay that can occur when implementing GPS/INS integrated navigation system of aircraft store that receives GPS data via wireless.

Development of Range Sensor Based Integrated Navigation System for Indoor Service Robots (실내용 서비스 로봇을 위한 거리 센서 기반의 통합 자율 주행 시스템 개발)

  • Kim Gunhee;Kim Munsang;Chung Woojin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.9
    • /
    • pp.785-798
    • /
    • 2004
  • This paper introduces the development of a range sensor based integrated navigation system for a multi-functional indoor service robot, called PSR (Public Service Robot System). The proposed navigation system includes hardware integration for sensors and actuators, the development of crucial navigation algorithms like mapping, localization, and path planning, and planning scheme such as error/fault handling. Major advantages of the proposed system are as follows: 1) A range sensor based generalized navigation system. 2) No need for the modification of environments. 3) Intelligent navigation-related components. 4) Framework supporting the selection of multiple behaviors and error/fault handling schemes. Experimental results are presented in order to show the feasibility of the proposed navigation system. The result of this research has been successfully applied to our three service robots in a variety of task domains including a delivery, a patrol, a guide, and a floor cleaning task.

Software Library Design for GNSS/INS Integrated Navigation Based on Multi-Sensor Information of Android Smartphone

  • Kim, Youngki;Fang, Tae Hyun;Seo, Kiyeol
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.279-286
    • /
    • 2022
  • In this paper, we designed a software library that produces integrated Global Navigation Satellite System (GNSS) / Inertial Navigation System (INS) navigation information using the raw measurements provided by the GNSS chipset, gyroscope, accelerometer and magnetometer embedded in android smartphone. Loosely coupled integration method was used to derive information of GNSS /INS integrated navigation. An application built in the designed library was developed and installed on the android smartphone. And we conducted field experiments. GNSS navigation messages were collected in the Radio Technical Commission for Maritime Service (RTCM 3.0) format by the Network Transport of RTCM via Internet Protocol (NTRIP). As a result of experiments, it was confirmed that design requirements were satisfied by deriving navigation such as three-dimensional position and speed, course over ground (COG), speed over ground (SOG), heading and protection level (PL) using the designed library. In addition, the results of this experiment are expected to be applicable to maritime navigation applications using smart device.

Integrated Navigation Design Using a Gimbaled Vision/LiDAR System with an Approximate Ground Description Model

  • Yun, Sukchang;Lee, Young Jae;Kim, Chang Joo;Sung, Sangkyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.369-378
    • /
    • 2013
  • This paper presents a vision/LiDAR integrated navigation system that provides accurate relative navigation performance on a general ground surface, in GNSS-denied environments. The considered ground surface during flight is approximated as a piecewise continuous model, with flat and slope surface profiles. In its implementation, the presented system consists of a strapdown IMU, and an aided sensor block, consisting of a vision sensor and a LiDAR on a stabilized gimbal platform. Thus, two-dimensional optical flow vectors from the vision sensor, and range information from LiDAR to ground are used to overcome the performance limit of the tactical grade inertial navigation solution without GNSS signal. In filter realization, the INS error model is employed, with measurement vectors containing two-dimensional velocity errors, and one differenced altitude in the navigation frame. In computing the altitude difference, the ground slope angle is estimated in a novel way, through two bisectional LiDAR signals, with a practical assumption representing a general ground profile. Finally, the overall integrated system is implemented, based on the extended Kalman filter framework, and the performance is demonstrated through a simulation study, with an aircraft flight trajectory scenario.

Study on GNSS Constellation Combination to Improve the Current and Future Multi-GNSS Navigation Performance

  • Seok, Hyojeong;Yoon, Donghwan;Lim, Cheol Soon;Park, Byungwoon;Seo, Seung-Woo;Park, Jun-Pyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.2
    • /
    • pp.43-55
    • /
    • 2015
  • In the case of satellite navigation positioning, the shielding of satellite signals is determined by the environment of the region at which a user is located, and the navigation performance is determined accordingly. The accuracy of user position determination varies depending on the dilution of precision (DOP) which is a measuring index for the geometric characteristics of visible satellites; and if the minimum visible satellites are not secured, position determination is impossible. Currently, the GLObal NAvigation Satellite system (GLONASS) of Russia is used to supplement the navigation performance of the Global Positioning System (GPS) in regions where GPS cannot be used. In addition, the European Satellite Navigation System (Galileo) of the European Union, the Chinese Satellite Navigation System (BeiDou) of China, the Quasi-Zenith Satellite System (QZSS) of Japan, and the Indian Regional Navigation Satellite System (IRNSS) of India are aimed to achieve the full operational capability (FOC) operation of the navigation system. Thus, the number of satellites available for navigation would rapidly increase, particularly in the Asian region; and when integrated navigation is performed, the improvement of navigation performance is expected to be much larger than that in other regions. To secure a stable and prompt position solution, GPS-GLONASS integrated navigation is generally performed at present. However, as available satellite navigation systems have been diversified, finding the minimum satellite constellation combination to obtain the best navigation performance has recently become an issue. For this purpose, it is necessary to examine and predict the navigation performance that could be obtained by the addition of the third satellite navigation system in addition to GPS-GLONASS. In this study, the current status of the integrated navigation performance for various satellite constellation combinations was analyzed based on 2014, and the navigation performance in 2020 was predicted based on the FOC plan of the satellite navigation system for each country. For this prediction, the orbital elements and nominal almanac data of satellite navigation systems that can be observed in the Korean Peninsula were organized, and the minimum elevation angle expecting signal shielding was established based on Matlab and the performance was predicted in terms of DOP. In the case of integrated navigation, a time offset determination algorithm needs to be considered in order to estimate the clock error between navigation systems, and it was analyzed using two kinds of methods: a satellite navigation message based estimation method and a receiver based method where a user directly performs estimation. This simulation is expected to be used as an index for the establishment of the minimum satellite constellation for obtaining the best navigation performance.

INS/GNSS/NHC Integrated Navigation System Compensating for Lever Arm Effect between NHC Effective Point and IMU Mounting Location

  • Chae, Myeong Seok;Kwon, Jae Uk;Cho, Eui Yeon;Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.3
    • /
    • pp.199-208
    • /
    • 2022
  • Inertial Navigation System (INS)/Global Navigation Satellite System (GNSS) integrated navigation system can be used for land vehicle navigation. When the GNSS signal is blocked in a dense urban area or tunnel, however, the problem of increasing the error over time is unavoidable because navigation must be performed only with the INS. In this paper, Non-Holonomic Constraints (NHC) information is utilized to solve this problem. The NHC may correct some of the errors of the INS. However, it should be noted that NHC information is not applicable to all areas within the vehicle. In other words, the lever arm effect occurs according to the distance between the Inertial Measurement Unit (IMU) mounting position and the NHC effective point, which causes the NHC condition not to be satisfied at the IMU mounting position. In this paper, an INS/GNSS/NHC integrated navigation filter is designed, and this filter has a function to compensate for the lever arm effect. Therefore, NHC information can be safely used regardless of the vehicle's driving environment. The performance of the proposed technology is verified through Monte-Carlo simulation, and the performance is confirmed through experimental test.

Implementation and Flight Test Performance Analysis of vSLAM Aided Integrated Navigation System for Rotary UAV (vSLAM 보조 통합항법시스템 구현 및 무인 회전익기를 이용한 비행시험 성능분석)

  • Yun, Suk-Chang;Lee, Byoung-Jin;Yun, Suk-Hwan;Lee, Young-Jae;Sung, Sang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.362-369
    • /
    • 2011
  • In this paper, vSLAM aided integrated navigation system is implemented and performance analysis of the system is completed via flight test. The system can suppress divergence of position error of INS only system by updating vSLAM correction information when temporary GPS signal outage occurs in bad radio condition. In the flight test, integrated hardware containing GPS, IMU and camera is loaded under RC electric helicopter. Performance of the integrated navigation system is verified by comparing estimated position of INS/vSLAM system with that of INS only system.

Study on Standardization Method of non-Standard AtoN Management and Operation System (비표준 항로표지 관리운영시스템 표준화 방안 연구)

  • Park, In-Hwan;Kim, Hyung-Lae
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.119-121
    • /
    • 2018
  • We intend to improve the navigation system integrated management system that is constructed and operated to meet the changes in marine traffic environment and prevent large-scale marine casualties and human casualties by applying the standard specification of integrated management system of marine traffic facilities in 2012. I t reuses the existing system resources and improves the operating software and standardizes the system installation to facilitate operation and maintenance.

  • PDF

A Survey on New Parameters of GPS CNAV/CNAV-2 and Their Roles (GPS CNAV/CNAV-2 항법메시지에 새롭게 추가된 파라미터와 그 역할 분석)

  • Halim Lee;Sanghyun Kim;Jongmin Park;Suhui Jeong;Seunghyeon Park;Jaewon Yu;Heonho Choi;Jiwon Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.45-52
    • /
    • 2024
  • As part of the Global Positioning System (GPS) modernization program in the United States, Civil Navigation (CNAV) and CNAV-2 messages were developed to introduce flexibility and modern features to the Legacy Navigation (LNAV) message. This paper explores the additional parameters introduced in CNAV/CNAV-2 compared to LNAV, focusing on their roles from the user's perspective. This paper compares the structural and parameter differences among LNAV, CNAV, and CNAV-2. Additionally, we analyze the types and roles of parameters newly incorporated into CNAV/CNAV-2 that were absent in LNAV.