• Title/Summary/Keyword: Integrated Level Model

Search Result 644, Processing Time 0.025 seconds

A Study on the Reasonable Rebate Level by Diffusion Characteristics and Avoided Cost Analyses of High Efficient Pumps (보급특성 및 회피비용 분석을 통한 고효율펌프의 적정 장려금 산정 방안 연구)

  • Hwang, Sung-Wook;Won, Jong-Ryul;Lee, Byung-Ha;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2008.04b
    • /
    • pp.3-5
    • /
    • 2008
  • In this paper, a modified diffusion model integrated with the effects of rebate programs is developed. The greater part of motors is included to various systems such as pump systems, fan systems, ventilation systems, motor itself, and so on. Hence, the existing rebate program is not suitable for these systems and a generalized rebate model for these systems is necessary. In the pre-study, a new diffusion model for motor rebate Program was proposed and the adequacy of this model was evaluated in the case of Korea. This paper shows that the motor rebate model could be applied to the case of pumps.

  • PDF

Designs of the Unified Information Model-IEC61850/IEC61970 and Topology Model for Smart Grid (스마트 그리드 망을 위한 IEC61970/IEC61850 통합 정보 모델과 토폴로지 모델 설계)

  • Yun, Seok-Yeul;Yim, Hwa-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.28-33
    • /
    • 2012
  • The smart grid, which is an integrated type of the power system and the digital network, requires the integration of a CIM(Common Information Model) standard for information modelling at the power control centers and an IEC 61850 standard for automation at the substation level in order to efficiently exchange the information between system elements. This paper describes the method of data transfer from one standard information model to the other standard unified information model by mapping between the objects of IEC 61850 and IEC61970 CIM standards both in the static and dynamic models, and designs the method of data transfer and information exchange between the topology processing application using unified topology class packages.

Development of the ISEP Based on Systems Engineering (시스템엔지니어링을 적용한 ISEP 개발에 관한 연구)

  • Byun, BoSuk;Choi, YoChul;Park, Young T.
    • Journal of Korean Society for Quality Management
    • /
    • v.41 no.4
    • /
    • pp.725-735
    • /
    • 2013
  • Purpose: The purpose of this study is to propose an Integrated Safety Evaluation Process (ISEP) that can enhances the safety aspect of the safety-critical system. This process utilizes the advantages of the iterative Systems Engineering process combined with the safety assessment process that is commonly and well defined in many standards and/or guidelines for railway, aerospace, and other safety-critical systems. Methods: The proposed process model is based on the predefined system lifecycle, in each phase of which the appropriate safety assessment activities and the safety data are identified. The interfaces between Systems Engineering process and the safety assessment process are identified before the two processes are integrated. For the integration, the elements at lower level of Systems Engineering process are combined with the relevant elements of safety assessment process. This combined process model is represented as Enhanced Functional Flow Block Diagram (EFFBD) by using CORE(R) that is commercial modelling tool. Results: The proposed model is applied to the lifecycle and management process of the United States aircraft system. The US aircraft systems engineering process are composed of twelve key elements, among which the requirements management, functional analysis, and Synthesis processes are considered for examplenary application of the proposed process. To synchronize the Systems Engineering process and the safety assessment process, the Systems Engineering milestones are utilized, where the US aircraft system has thirteen milestones. Taking into account of the nine steps in the maturity level, the integrated process models are proposed in some phases of lifecycle. The flows of processes are simulated using CORE(R), confirming the flows are timelined without any conflict between the Systems Engineering process and the safety assessment process. Conclusion: ISEP allows the timeline analysis for identifying activity and data flows. Also, the use of CORE(R) is shown to be effective in the management and change of process data, which helps for the ISEP to apply for the development of safety critical system. In this study, only the first few phases of lifecyle are considered, however, the implementation through operation phases can be revised by combining the elements of safety activities regarding those phases.

Muscle Radiation Attenuation in the Erector Spinae and Multifidus Muscles as a Determinant of Survival in Patients with Gastric Cancer

  • An, Soomin;Kim, Youn-Jung;Han, Ga Young;Eo, Wankyu
    • Journal of Korean Biological Nursing Science
    • /
    • v.24 no.1
    • /
    • pp.17-25
    • /
    • 2022
  • Purpose: To determine the prognostic role of muscle area and muscle radiation attenuation in the erector spinae (ES) and multifidus (MF) muscles in patients undergoing gastrectomy. Methods: Patients with stage I-III gastric cancer undergoing gastrectomy were retrospectively enrolled in this study. Clinicopathologic characteristics were collected and analyzed. Both paraspinal muscle index of ES/MF muscles (PMIEM) and paraspinal muscle radiation attenuation in the same muscles (PMRAEM) were analyzed at the 3rd lumbar level using axial computed tomographic images. Cox regression analysis was applied to estimate overall survival (OS) and disease-free survival (DFS). Results: There was only a weak correlation between PMIEM and PMRAEM (r= 0.28). Multivariate Cox regression revealed that PMRAEM, but not PMIEM, was an important determinant of survival. PMRAEM along with age, tumor-node-metastasis (TNM) stage, perineural invasion, and serum albumin level were significant determinants of both OS and DFS that constituted Model 1. Harrell's concordance index and integrated area under receiver operating characteristic curve were greater for Model 1 than for Model 2 (consisting of the same covariates as Model 1 except PMRAEM) or Model 3 (consisting of only TNM stage). Conclusion: PMRAEM, but not PMIEM, was an important determinant of survival. Because there was only a weak correlation between PMIEM and PMRAEM in this study, it was presumed that they were mutually exclusive. Model 1 consisting of age, TNM stage, perineural invasion, serum albumin level, and PMRAEM was greater than nested models (i.e., Model 2 or Model 3) in predicting survival outcomes.

Three-Dimensional Active Shape Models for Medical Image Segmentation (의료영상 분할을 위한 3차원 능동 모양 모델)

  • Lim, Seong-Jae;Jeong, Yong-Yeon;Ho, Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.5
    • /
    • pp.55-61
    • /
    • 2007
  • In this paper, we propose a three-dimensional(3D) active shape models for medical image segmentation. In order to build a 3D shape model, we need to generate a point distribution model(PDM) and select corresponding landmarks in all the training shapes. The manual determination method, two-dimensional(2D) method, and limited 3D method of landmark correspondences are time-consuming, tedious, and error-prone. In this paper, we generate a 3D statistical shape model using the 3D model generation method of a distance transform and a tetrahedron method for landmarking. After generating the 3D model, we extend the shape model training and gray-level model training of 2D active shape models(ASMs) and we use the integrated modeling process with scale and gray-level models for the appearance profile to represent the local structure. Experimental results are comparable to those of region-based, contour-based methods, and 2D ASMs.

An Integrated Shop Operation System for Multi-Cell Flexible Manufacturing Systems under Job Shop Environments (멀티 셀 유연생산환경을 위한 통합운용시스템)

  • Nam, Sung-Ho;Ryu, Kwang-Yeol;Shin, Jeong-Hoon;Kwon, Ki-Eok;Lee, Seok-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.386-394
    • /
    • 2012
  • Recent trends in the flexible manufacturing systems are morphing cell control for the shop-wide production operation system and providing the integrated operation and execution system together with vendor-specific FMC/FMS platform. In these requirements, the shop-floor level operation system plays a role of coordinating the control activity of each cell, and has to provide flexibility for the complexity of mixed operations of various cells. This paper suggests a system architecture for the mixed environments of multi-cells and job shop, its corresponding enabling technologies based on comparative studies with other related studies and commercialized systems. This approach includes a process definition model considering the integration with upper BOM-BOP and external service modules, and reconfigurable device-level interface which provides dynamic interconnections with machine tools and cell controllers. The function modules and their implementation results are also described to provide the feasibility of the proposed approaches as the flexible shop-floor operation system for the multi-cell environments.

Forecasting Exchange Rates using Support Vector Machine Regression

  • Chen, Shi-Yi;Jeong, Ki-Ho
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.155-163
    • /
    • 2005
  • This paper applies Support Vector Regression (SVR) to estimate and forecast nonlinear autoregressive integrated (ARI) model of the daily exchange rates of four currencies (Swiss Francs, Indian Rupees, South Korean Won and Philippines Pesos) against U.S. dollar. The forecasting abilities of SVR are compared with linear ARI model which is estimated by OLS. Sensitivity of SVR results are also examined to kernel type and other free parameters. Empirical findings are in favor of SVR. SVR method forecasts exchange rate level better than linear ARI model and also has superior ability in forecasting the exchange rates direction in short test phase but has similar performance with OLS when forecasting the turning points in long test phase.

  • PDF

A PETRI NET-BASED CELL CONTROLLER FOR A FLEXIBLE MANUFACTURING SYSTEM

  • Janssens, Gerrit-K.;Tabucanon, Mario-T.
    • Management Science and Financial Engineering
    • /
    • v.3 no.1
    • /
    • pp.15-38
    • /
    • 1997
  • In a flexible manufacturing system, a cell controller is able to identify and evaluate a number of alternative decisions to meet the objectives set by the factory level controller. In this paper, a Petri net-based cell controller is presented to accomplish this task. A static model is developed by using the Integrated Computer Aided Definition(IDEF0) method to represent clear functional relationships among the objects of the system. Based on the static model, two Petri net models are developed for the physical part flow and for the information flow. Multiple decision alternatives are generated from the physical part flow model and are synchronized with the information flow model for execution of the selected alternative.

  • PDF

OPTIMAL DESIGN MODEL FOR A DISTRIBUTED HIERARCHICAL NETWORK WITH FIXED-CHARGED FACILITIES

  • Yoon, Moon-Gil;Baek, Young-Ho;Tcha, Dong-Wan
    • Management Science and Financial Engineering
    • /
    • v.6 no.2
    • /
    • pp.29-45
    • /
    • 2000
  • We consider the design of a two-level telecommunication network having logical full-mesh/star topology, with the implementation of conduit systems taken together. The design problem is then viewed as consisting of three subproblems: locating hub facilities, placing a conduit network, and installing cables therein to configure the logical full-mesh/star network. Without partitioning into subproblems as done in the conventional approach, the whole problem is directly dealt with in a single integrated framework, inspired by some recent successes with the approach. We successfully formulate the problem as a variant of the classical multicommodity flow model for the fixed charge network design problem, aided by network augmentation, judicious commodity definition, and some flow restrictions. With our optimal model, we solve some randomly generated sample problems by using CPLEX MIP program. From the computational experiments, it seems that our model can be applied to the practical problem effectively.

  • PDF

Dynamic Model for Electrode Expansion in Resistance Spot Welding Machines (저항점 용접에서 전극팽창에 관한 동적모델)

  • Shah, Syed Asad Ullah;Chang, Hee-Seok
    • Journal of Welding and Joining
    • /
    • v.29 no.2
    • /
    • pp.94-101
    • /
    • 2011
  • A lumped mass damped vibratory model was proposed for quantitative understanding of welding machine characteristics. An experimental setup was developed to determine the mechanical parameters (moving mass m, equivalent stiffness k and damping c) which govern the dynamic mechanical response of the resistance spot welding machine. During the test, acceleration of the electrodes for each level of applied load was measured by accelerometer, filtered and numerically integrated to find the corresponding velocity and displacement. The machine dynamic parameters were determined by finding the unknowns of the proposed model with experimental data. A Simulink model was proposed to investigate the influence of these mechanical parameters on the welding process. The electrode response was simulated by changing values of stiffness and damping. It was observed that both of the machine parameters(c, k) have significant effect on the response of electrode head.