• 제목/요약/키워드: Integrated EV charging system

검색결과 10건 처리시간 0.021초

Optimal installation of electric vehicle charging stations connected with rooftop photovoltaic (PV) systems: a case study

  • Heo, Jae;Chang, Soowon
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.937-944
    • /
    • 2022
  • Electric vehicles (EVs) have been growing to reduce energy consumption and greenhouse gas (GHG) emissions in the transportation sector. The increasing number of EVs requires adequate recharging infrastructure, and at the same time, adopts low- or zero-emission electricity production because the GHG emissions are highly dependent on primary sources of electricity production. Although previous research has studied solar photovoltaic (PV) -integrated EV charging stations, it is challenging to optimize spatial areas between where the charging stations are required and where the renewable energy sources (i.e., solar photovoltaic (PV)) are accessible. Therefore, the primary objective of this research is to support decisions of siting EV charging stations using a spatial data clustering method integrated with Geographic Information System (GIS). This research explores spatial relationships of PV power outputs (i.e., supply) and traffic flow (i.e., demand) and tests a community in the state of Indiana, USA for optimal sitting of EV charging stations. Under the assumption that EV charging stations should be placed where the potential electricity production and traffic flow are high to match supply and demand, this research identified three areas for installing EV charging stations powered by rooftop PV in the study area. The proposed strategies will drive the transition of existing energy infrastructure into decentralized power systems. This research will ultimately contribute to enhancing economic efficiency and environmental sustainability by enabling significant reductions in electricity distribution loss and GHG emissions driven by transportation energy.

  • PDF

Stochastic Integrated Generation and Transmission Planning Incorporating Electric Vehicle Deployment

  • Moon, Guk-Hyun;Kong, Seong-Bae;Joo, Sung-Kwan;Ryu, Heon-Su;Kim, Tae-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권1호
    • /
    • pp.1-10
    • /
    • 2013
  • The power industry is currently facing many challenges, due to the new environment created by the introduction of smart grid technologies. In particular, the large-scale deployment of electric vehicles (EVs) may have a significant impact on demand for electricity and, thereby, influence generation and transmission system planning. However, it is difficult to deal with uncertainties in EV charging loads using deterministic planning methods. This paper presents a two-stage stochastic decomposition method with Latin-hyper rectangle sampling (LHRS) to solve the integrated generation and transmission planning problem incorporating EV deployment. The probabilistic distribution of EV charging loads is estimated by Latin-hyper rectangle sampling (LHRS) to enhance the computational performance of the proposed method. Numerical results are presented to show the effectiveness of the proposed method.

전기자동차용 유·무선 통합 충전 시스템의 고효율 동작을 위한 권선비 가변형 LLC 컨버터 설계 및 제어 방안 (Design and Control of Adjustable Turn-ratio LLC Converter for High-efficiency Operation of Wired/Wireless Integrated Charging System for Electric Vehicles)

  • 조현우;심동현;이주아;손원진;이병국
    • 전력전자학회논문지
    • /
    • 제27권3호
    • /
    • pp.237-246
    • /
    • 2022
  • This paper proposes a method to adjust the turn ratio of a transformer for the high-efficiency operation of an LLC converter with a wide input range in a wired/wireless integrated charging system for electric vehicles. The characteristics of the inductive power transfer converter in the integrated charging system are analyzed to design the LLC converter, and the DC-link voltage range is derived. The aspect of voltage gain following each parameter of the LLC converter is analyzed, and the resonant network and transformer are designed. Based on the designed parameters, the feasibility of the design and control method is verified by implementing the operation of the LLC converter according to the DC-link and battery voltages.

전기자동차용 유·무선 통합 충전을 고려한 무선 충전 시스템의 두 가지 제어 방식에 따른 효율 비교·분석 (Comparison of Efficiency According to the Two Control Method of the Wireless Charging System Considering Wired/Wireless Integrated Charging System for EV)

  • 허훈;이주아;심동현;손원진;이병국
    • 전력전자학회논문지
    • /
    • 제27권3호
    • /
    • pp.228-236
    • /
    • 2022
  • The charging methods of electric vehicles are divided into wired charging and wireless charging. Restrictions on the use of charging infrastructure for wireless charging vehicles currently exist because most charging infrastructure uses the wired charging method. Thus, wired and wireless integrated charging system has been studied. In this system, a wireless charging system especially requires a control method for high-efficiency operation in consideration of a change in a coupling coefficient. Therefore, this paper introduces two control methods for the high-efficiency operation of wireless charging that can be applied to wired and wireless integrated charging systems. In addition, loss analysis is performed through PSIM simulation to select a more advantageous method for high-efficiency operation among the two control methods. To verify the simulation-based loss analysis result, the two control methods are applied to the actual wireless charging system, and the efficiency is compared through the experiments Based on the experimental results, a control method suitable for high-efficiency operation of the wireless charging method is selected.

OPC UA를 이용한 N-Port EV 충전 시스템 연구 (Study of N-Port Electric Vehicle Charging Systems Using OPC-UA)

  • 이성준
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제6권8호
    • /
    • pp.343-352
    • /
    • 2017
  • OPC UA로 명명된 국제 표준 IEC62541은 스마트 그리드(Smart Grid)와 스마트 팩토리(Smart Factory)의 응용 플랫폼을 위한 통신 프로토콜이다. 2011년 IEC TC57 그룹에서 표준화되었으며, 다른 표준들과의 협업을 통해 점차 사용범위를 넓히고 있다. 전기자동차 보급을 위한 정부 차원의 노력("전기차 충전인프라 확산 캠페인")으로 인해 스마트 팩토리에서 충전을 시도하는 전기자동차의 수는 점차적으로 증가할 것을 예상된다. 제어되지 않는 무분별한 전기자동차 충전으로 인해 스마트 팩토리의 최대수요전력을 초과하는 문제를 발생시킬 수 있다. 그러므로 스마트 팩토리 내에 전기자동차 충전 시 피크부하를 관리할 필요성이 있다. 그러나 현재의 전기자동차 충전을 위한 표준은 스마트 팩토리의 통신 프로토콜과 다르다. 다시 말해서, 편의성을 높이고, 부담을 줄 일 수 있는 프로토콜의 개발 또는 호환성 제공에 관한 연구가 필요하다. 본 논문은 스마트 팩토리에 설치되는 전기자동차 충전 시스템을 스마트 팩토리 관리시스템과 통합 관리하기 위한 플랫폼에 관한 것이다. 본 논문에서는 IEC61851과 IEC62541에 기반을 둔 전기자동차 충전기 관리 시스템을 구현한다.

EV용 충전 인덕터용 PFC 및 제로 토크제어 (PFC and Zero Torque Control of SRM for EV Battery Charging)

  • ;;;이동희;안진우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.652-654
    • /
    • 2015
  • Integrated switched reluctance motor drive as an electric vehicle battery charger is presented in this paper. The SRM, which is used as the traction power in the driving mode, is used in the charge circuit to improve the power factor of charging system. The charging circuit can share the power switches of the asymmetric converter and phase windings of SRM to charge the battery, and can reduce the size and cost of the system in the plug-in system. To keep the rotor at standstill, zero torque control method is proposed. Since the inductances of the SRM windings are not same at any stop position, the charger controller controls the reference current to satisfy the total charging current with PFC and zero torque condition. A novel cubic equation method is proposed as a current reference distributor of the charging controller. Simulations are performed by MATLAB software and results satisfy the Effectiveness of proposed battery charging system.

  • PDF

Design and Control of an Optimized Battery Charger for an xEV Based on Photovoltaic Power Systems

  • Kim, Dong-Hee;Cheo, Gyu-Yeong;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1602-1613
    • /
    • 2014
  • The continuous growth of electric vehicles has caused electric power shortages in conventional utilities owing to the charging of electric-vehicle batteries. In order to increase the capacity of these utilities, photovoltaic systems may be an appropriate solution because of their benefits. However, a large amount of loss is generated in a conventional charging structure using photovoltaic sources owing to the many power conversion processes. This paper describes a simple integrated battery charger that utilizes a PV generation system. Moreover, the system control algorithm is deduced by analyzing the operation modes in order to control the proposed integrated system. The proposed system and algorithm are verified by a 3.3-kW prototype, resulting in an increase in the efficiency of approximately 7% to 15% compared with the conventional system. And, to examine the feasibility of the proposed system, the simulation for multi-charger with various conditions are progressed.

충전기 겸용 스위치드 릴럭턴스 전동기의 제로토크제어 (Zero Torque Control of Switched Reluctance Motor for Integral Charging)

  • 라쉬디;나마찌;세헤이안;이동희;안진우
    • 전기학회논문지
    • /
    • 제66권2호
    • /
    • pp.328-338
    • /
    • 2017
  • In this paper, a zero torque control scheme adopting current sharing function (CSF) used in integrated Switched Reluctance Motor (SRM) drive with DC battery charger is proposed. The proposed control scheme is able to achieve the keeping position (KP), zero torque (ZT) and power factor correction (PFC) at the same time with a simple novel current sharing function algorithm. The proposed CSF makes the proper reference for each phase windings of SRM to satisfy the total charging current of the battery with zero torque output to hold still position with power factor correction, and the copper loss minimization during of battery charging is also achieved during this process. Based on these, CSFs can be used without any recalculation of the optimal current at every sampling time. In this proposed integrated battery charger system, the cost effective, volume and weight reduction and power enlargement is realized by function multiplexing of the motor winding and asymmetric SR converter. By using the phase winding as large inductors for charging process, and taking the asymmetric SR converter as an interleaved converter with boost mode operation, the EV can be charged effectively and successfully with minimum integral system. In this integral system, there is a position sliding mode controller used to overcome any uncertainty such as mutual inductance or DC offset current sensor. Power factor correction and voltage adaption are obtained with three-phase buck type converter (or current source rectifier) that is cascaded with conventional SRM, one for wide input and output voltage range. The practicability is validated by the simulation and experimental results by using a laboratory 3-hp SRM setup based on TI TMS320F28335 platform.

변동성 재생e 유연 대응을 위한 한국형 V2G 기술개발 (Korean V2G Technology Development for Flexible Response to Variable Renewable Energy)

  • 손찬;유승덕;임유석;박기준
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권2호
    • /
    • pp.329-333
    • /
    • 2021
  • V2G (Vehicle to Grid) technology for an EV (Electric Vehicle) has been assumed as so promising in a near future for its useful energy resource concept but still yet to be developed around the world for specific service purposes through various R&BD projects. Basically, V2G returns power stored in vehicle at a cheaper or unused time to the grid at more expensive or highly peaked time, and is accordingly supposed to provide such roles like peak shaving or load levelling according to customer load curve, frequency regulation or ancillary reserves, and balancing power fluctuation to grid from the weather-sensitive renewable sources like wind or solar generations. However, it has recently been debated over its prominent usage as diffusing EVs and the required charging/discharging infrastructure, partially for its addition of EV ownership costs with more frequent charging/discharging events and user inconvenience with a relative long-time participation in the previously engaged V2G program. This study suggests that a Korean DR (Demand Response) service integrated V2G system especially based upon a dynamic charge/pause/discharge scheme newly proposed to ISO/IEC 15118 rev. 2 can deal with these concerns with more profitable business model, while fully making up for the additional component (ex. battery) and service costs. It also indicates that the optimum economic, environmental, and grid impacts can be simulated for this V2G-DR service particularly designed for EV aggregators (V2G service providers) by proposing a specific V2G engagement program for the mediated DR service providers and the distributed EV owners.

전기자동차 충·방전제어 통합 환경을 고려한 전기차 1차 주파수 회복예비력의 계통연계형 모델링 (Gird Connected Modeling of Primary Frequency Recovery Reserve Provided by Electric Vehicle Considering Characteristics of Electric Vehicle Charge/Discharge Control Integrated Environment)

  • 국경수;이지훈;문종희;최우영;박기준;장동식
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권2호
    • /
    • pp.249-254
    • /
    • 2021
  • As the spreading speed of electric vehicles increases rapidly, those are expected to be able to use them as flexible resources in the power system beyond the concern for the supply of its charging power. Especially when the Renewable Energy sources (RES) which have no intrinsic control capability have replaced the synchronous generators more and more, the power system needs to secure the additional frequency control resources to ensure its stability. However, the feasibility of using electric vehicles as the frequency control resources should be analyzed from the perspective of the power system operation and it requires the existing simulation frameworks for the power system. Therefore, this paper proposes the grid connected modeling of the primary frequency control provided by electric vehicles which can be integrated into the existing power system model. In addition, the proposed model is implemented considering technical performances constrained by the characteristics of the Vehicle-Grid Integration (VGI) system so that the simulation results can be accepted by the power utilities operating the power system conservatively.