• 제목/요약/키워드: Integral abutment bridge

검색결과 43건 처리시간 0.017초

PSC 일체식 교대교량의 거동특성에 관한 매개변수 연구 (Parametric Study on the Behavioral Characteristics of PSC Integral Abutment Bridges)

  • 최우진;윤지현;안진희;김상효;이상우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.31-32
    • /
    • 2009
  • 본 연구는 Pre-Stressed Concrete 일체식 교대교량의 거동을 평가하기 위한 매개변수 연구로써, 매개변수 변화에 따른 거동 특성을 단경간 및 다경간 PSC 교량의 상부구조에 작용하는 모멘트 변화 경향을 이용하여 분석하였다.

  • PDF

온도변화에 따른 무신축이음 강상자형 교량의 거동 분석 (Behavior of Jointless Bridge of Steel Box Girder Type Due to Temperature Change)

  • 조남훈;이성우
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.95-102
    • /
    • 1997
  • Jointless bridge is a new construction method applicable to bridge of short length. In the jointless bridge expansion of superstructure due to thermal effect was absorbed in the flexible pile-type abutment in stead of expansion joint in the conventional bridges. By removing expansion joint, it retards deterioration and extends life time of bridge. In this paper, jointless bridge of steel box girder type was studied through finite element analysis. Stress variations of superstructure and pile due to thermal effect was studied for the two span continuous integral bridge of 80m length and the results of analysis was presented.

  • PDF

Strengthened and flexible pile-to-pilecap connections for integral abutment bridges

  • Lee, Jaeha;Kim, WooSeok;Kim, Kyeongjin;Park, Soobong;Jeong, Yoseok
    • Steel and Composite Structures
    • /
    • 제20권4호
    • /
    • pp.731-748
    • /
    • 2016
  • Pile-to-pilecap connection performance is important as Integral abutment bridges (IABs) have no expansion joints and their flexible weak-axis oriented supporting piles take the role of the expansion joint. This connection may govern the bridge strength and the performance against various lateral loads. The intention of this study is to identify crack propagation patterns when the pile-to-pilecap connection is subjected to lateral loadings and to propose novel connections for improved performance under lateral loadings. In this study, eight different types of connections were developed and modeled, using Abaqus 6.12 to evaluate performances. Three types were developed by strengthening the connections using rebar or steel tube: (i) PennDOT specification; (ii) Spiral rebar; and (iii) HSS tube. Other types were developed by softening the connections using shape modifications: (i) cylindrical hole; (ii) reduced flange; (iii) removed flange; (iv) extended hole; and (v) slot hole connection types. The connections using the PennDOT specification, HSS tube, and cylindrical hole were shown to be ineffective in the prevention of cracks, resulting in lower structural capacities under the lateral load compared to other types. The other developed connections successfully delayed or arrested the concrete crack initiations and propagations. Among the successful connection types, the spiral rebar connection allowed a relatively larger reaction force, which can damage the superstructure of the IABs. Other softened connections performed better in terms of minimized reaction forces and crack prevention.