• Title/Summary/Keyword: Integral Parameters

Search Result 584, Processing Time 0.029 seconds

Visco-elastic foundation effect on buckling response of exponentially graded sandwich plates under various boundary conditions

  • Mimoun Bennedjadi;Salem Mohammed Aldosari;Abdelbaki Chikh;Abdelhakim Kaci;Abdelmoumen Anis Bousahla;Fouad Bourada;Abdeldjebbar Tounsi;Kouider Halim Benrahou;Abdelouahed Tounsi
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.159-177
    • /
    • 2023
  • In the present work, a simple and refined shear deformation theory is used to analyze the effect of visco-elastic foundation on the buckling response of exponentially-gradient sandwich plates under various boundary conditions. The proposed theory includes indeterminate integral variables kinematic with only four generalized parameters, in which no shear correction factor is used. The visco-Pasternak's foundation is taken into account by adding the influence of damping to the usual foundation model which characterized by the linear Winkler's modulus and Pasternak's foundation modulus. The four governing equations for FGM sandwich plates are derived by employing principle of virtual work. To solve the buckling problem, Galerkin's approach is utilized for FGM sandwich plates for various boundary conditions. The analytical solutions for critical buckling loads of several types of powerly graded sandwich plates resting on visco-Pasternak foundations under various boundary conditions are presented. Some numerical results are presented to indicate the effects of inhomogeneity parameter, elastic foundation type, and damping coefficient of the foundation, on the critical buckling loads.

Theoretical buckling analysis of inhomogeneous plates under various thermal gradients and boundary conditions

  • Laid Lekouara;Belgacem Mamen;Abdelhakim Bouhadra;Abderahmane Menasria;Kouider Halim Benrahou;Abdelouahed Tounsi;Mohammed A. Al-Osta
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.443-459
    • /
    • 2023
  • This study investigates the theoretical thermal buckling analyses of thick porous rectangular functionally graded (FG) plates with different geometrical boundary conditions resting on a Winkler-Pasternak elastic foundation using a new higher-order shear deformation theory (HSDT). This new theory has only four unknowns and involves indeterminate integral variables in which no shear correction factor is required. The variation of material properties across the plate's thickness is considered continuous and varied following a simple power law as a function of volume fractions of the constituents. The effect of porosity with two different types of distribution is also included. The current formulation considers the Von Karman nonlinearity, and the stability equations are developed using the virtual works principle. The thermal gradients are involved and assumed to change across the FG plate's thickness according to nonlinear, linear, and uniform distributions. The accuracy of the newly proposed theory has been validated by comparing the present results with the results obtained from the previously published theories. The effects of porosity, boundary conditions, foundation parameters, power index, plate aspect ratio, and side-to-thickness ratio on the critical buckling temperature are studied and discussed in detail.

Spatial Estimation of soil roughness and moisture from Sentinel-1 backscatter over Yanco sites: Artificial Neural Network, and Fractal

  • Lee, Ju Hyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.125-125
    • /
    • 2020
  • European Space Agency's Sentinel-1 has an improved spatial and temporal resolution, as compared to previous satellite data such as Envisat Advanced SAR (ASAR) or Advanced Scatterometer (ASCAT). Thus, the assumption used for low-resolution retrieval algorithms used by ENVISAT ASAR or ASCAT is not applicable to Sentinel-1, because a higher degree of land surface heterogeneity should be considered for retrieval. The assumption of homogeneity over land surface is not valid any more. In this study, considering that soil roughness is one of the key parameters sensitive to soil moisture retrievals, various approaches are discussed. First, soil roughness is spatially inverted from Sentinel-1 backscattering over Yanco sites in Australia. Based upon this, Artificial Neural Networks data (feedforward multiplayer perception, MLP, Levenberg-Marquadt algorithm) are compared with Fractal approach (brownian fractal, Hurst exponent of 0.5). When using ANNs, training data are achieved from theoretical forward scattering models, Integral Equation Model (IEM). and Sentinel-1 measurements. The network is trained by 20 neurons and one hidden layer, and one input layer. On the other hand, fractal surface roughness is generated by fitting 1D power spectrum model with roughness spectra. Fractal roughness profile is produced by a stochastic process describing probability between two points, and Hurst exponent, as well as rms heights (a standard deviation of surface height). Main interest of this study is to estimate a spatial variability of roughness without the need of local measurements. This non-local approach is significant, because we operationally have to be independent from local stations, due to its few spatial coverage at the global level. More fundamentally, SAR roughness is much different from local measurements, Remote sensing data are influenced by incidence angle, large scale topography, or a mixing regime of sensors, although probe deployed in the field indicate point data. Finally, demerit and merit of these approaches will be discussed.

  • PDF

Combined influence of porosity and elastic foundation parameters on the bending behavior of advanced sandwich structures

  • Malek Hadji;Abdelhakim Bouhadra;Belgacem Mamen;Abderahmane Menasria;Abdelmoumen Anis Bousahla;Fouad Bourada;Mohamed Bourada;Kouider Halim Benrahou;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Elastic bending of imperfect functionally graded sandwich plates (FGSPs) laying on the Winkler-Pasternak foundation and subjected to sinusoidal loads is analyzed. The analyses have been established using the quasi-3D sinusoidal shear deformation model. In this theory, the number of unknowns is condensed to only five unknowns using integral-undefined terms without requiring any correction shear factor. Moreover, the current constituent material properties of the middle layer is considered homogeneous and isotropic. But those of the top and bottom face sheets of the graded porous sandwich plate (FGSP) are supposed to vary regularly and continuously in the direction of thickness according to the trigonometric volume fraction's model. The corresponding equilibrium equations of FGSPs with simply supported edges are derived via the static version of the Hamilton's principle. The differential equations of the system are resolved via Navier's method for various schemes of FGSPs. The current study examine the impact of the material index, porosity, side-to-thickness ratio, aspect ratio, and the Winkler-Pasternak foundation on the displacements, axial and shear stresses of the sandwich structure.

Process analytical technology (PAT): field applications and current status in pharmaceutical industries (공정분석기술: 제약산업에서의 기술개발 사례 및 현황)

  • Woo, Young-Ah;Kim, Jong-Yun;Park, Yong Joon;Yeon, Jei-Won;Song, Kyuseok;Kim, Hyo-Jin
    • Analytical Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.35-43
    • /
    • 2009
  • The goal of PAT (Process Analytical Technology) is to build quality into products through better understanding and control of manufacturing processes, rather than merely testing the quality of the end product. Pharmaceutical manufacturers are trying to develop and implement new technologies in pharmaceutical production and quality control for real-time measurements of critical product and process parameters. Characterization of manufacturing process through experimental design, for evaluation of the effect of product and process variables, represents an integral part of the PAT framework. However, the publications regarding real PAT application to pharmaceutical process are very limited and the technologies are confidential as well. In this review, the case studies related to PAT are shown with real applications from a pharmaceutical company. Additionally, various applications of PAT on the developing stage are introduced with high analytical technologies for the improvement of quality control on manufacturing process.

A novel hyperbolic integral-Quasi-3D theory for flexural response of laminated composite plates

  • Ahmed Frih;Fouad Bourada;Abdelhakim Kaci;Mohammed Bouremana;Abdelouahed Tounsi;Mohammed A. Al-Osta;Khaled Mohamed Khedher;Mohamed Abdelaziz Salem
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.233-250
    • /
    • 2023
  • This paper investigates the flexural analysis of isotropic, transversely isotropic, and laminated composite plates using a new higher-order normal and shear deformation theory. In the present theory, only five unknown functions are involved compared to six or more unknowns used in the other similar theories. The developed theory does not need a shear correction factor. It can satisfy the zero traction boundary conditions on the top and the bottom surfaces of the plate as well as account for sufficient distribution of the transverse shear strains. The thickness stretching effect is considered in the computation. A simply supported was considered on all edges of the plate. The plate is subjected to uniform and sinusoidal distributed load in the static analysis. Laminated composite, isotropic, and transversely isotropic plates are considered. The governing equations are obtained utilizing the virtual work principle. The differential equations are solved via Navier's procedure. The results obtained from the developed theory are compared with other higher-order theories considered in the previous studies and 3D elasticity solutions. The results showed that the proposed theory accurately and effectively predicts the bidirectional bending responses of laminated composite plates. Several parametric studies are presented to illustrate the various parameters influencing the static response of the laminated composite plates.

A Study on the Improvement of the Initial Adhesive Strength of Tile Epoxy Adhesive Using 6 Sigma Methodology (6시그마를 이용한 타일 에폭시 접착제의 초기 접착 강도 향상에 관한 연구)

  • Jeong Ho Lee;Gyu Ik Bae;Byeong Uk Ha;So Min Kim;Si Il Sung
    • Journal of Korean Society for Quality Management
    • /
    • v.52 no.3
    • /
    • pp.413-428
    • /
    • 2024
  • Purpose: This study aims to optimize the adhesive strength of epoxy adhesive when applied to tiles, addressing frequent issues of adhesion degradation observed in indoor interiors. The degradation often leads to costly repairs and maintenance, highlighting the need for improved adhesive formulations and application techniques. Methods: Employing the DMAIC (Define, Measure, Analyze, Improve, Control) methodology integral to Six Sigma and utilizing MINITAB for data analysis, this research focused on critical factors like curing time, application method, and mixing ratio. The Taguchi Experimental Design within the Design of Experiments (DOE) framework was applied to determine the impact of these parameters on adhesive strength. Results: The analysis facilitated by Taguchi's method led to notable improvements in adhesive workability and consistency. It identified the optimal combination of factors that significantly increase adhesive strength, evidenced by the improvement in signal-to-noise ratio and I-MR control charts. Conclusion: By applying a structured statistical approach through Six Sigma and the Taguchi method, the study successfully pinpointed optimal conditions for epoxy adhesive application on tiles. This contributes to quality management in the manufacturing and application processes of epoxy adhesives, ensuring enhanced durability and reliability in indoor tiling applications. The findings offer a significant methodological framework for future material optimization research.

Signal to Noise Ratio of MR Spectrum by variation echo time : comparison of 1.5T and 3.0T (Echo time에 따른 MR spectrum의 SNR: 1.5T와 3.0T비교)

  • Kim, Sung-Gil;Lee, Kyu-Su;Rim, Che-Pyeong
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.6
    • /
    • pp.401-407
    • /
    • 2011
  • The purpose of this study is to know the differences of MR spectra, obtained from normal volunteers by variable TE value, through the quantitative analysis of brain metabolites by peak integral and SNR between 1.5T and 3.0T, together with PRESS and STEAM pulse sequence. Single-voxel MR proton spectra of the human brain obtained from normal volunteers at both 3.0T MR system (Magnetom Trio, SIEMENS, Germany) and 1.5T MR system (Signa Twinspeed, GE, USA) using the STEAM and PRESS pulse sequence. 10 healthy volunteers (3.0T:3 males, 2 females; 1.5T : 3 males, 2 females) with the range from 22 to 30 years old (mean 26 years) participated in our study. They had no personal or familial history of neurological diseases and had a normal neurological examination. Data acquisition parameters were closely matched between the two field strengths. Spectra were recorded in the white matter of the occipital lobe. Spectra were compared in terms of resolution and signal-to-noise ratio(SNR), and echo time(TE) were estimated at both field strengths. Imaging parameters was used for acquisition of the proton spectrum were as follow : TR 2000msec, TE 30ms, 40ms, 50ms, 60ms, 90ms, 144ms, 288ms, NA=96, VOI=$20{\times}20{\times}20mm3$. As the echo times were increased, the spectra obtained from 3.0T and 1.5T show decreased peak integral and SNR at both pulse sequence. PRESS pulse sequence shows higher SNR and signal intensity than those of STEAM. Especially, Spectra in normal volunteers at 3.0T demonstrated significantly improved overall SNR and spectral resolution compared to 1.5T(Fig1). The spectra acquired at short echo time, 3T MR system shows a twice improvement in SNR compared to 1.5T MR system(Table. 1). But, there was no significant difference between 3.0Tand 1.5T at long TE It is concluded that PRESS and short TE is useful for quantification of the brain metabolites at 3.0T MRS, our standardized protocol for quantification of the brain metabolites at 3.0T MRS is useful to evaluate the brain diseases by monitoring the systematic changes of biochemical metabolites concentration in vivo.

PSO-Based PID Controller for AVR Systems Concerned with Design Specification (설계사양을 고려한 AVR 시스템의 PSO 기반 PID 제어기)

  • Lee, Yun-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.330-338
    • /
    • 2018
  • The proportional-integral-derivative(PID) controller has been widely used in the industry because of its robust performance and simple structure in a wide range of operating conditions. However, the AVR(Automatic Voltage Regulator) as a control system is not robust to variations of the power system parameters. Therefore, it is necessary to use PID controller to increase the stability and performance of the AVR system. In this paper, a novel design method for determining the optimal PID controller parameters of an AVR system using the particle swarm optimization(PSO) algorithm is presented. The proposed approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency. In order to assist estimating the performance of the proposed PSO-PID controller, a new performance criterion function is also defined. This evaluation function is intended to reflect when the maximum percentage overshoot, the settling time are given as design specifications. The ITAE evaluation function should impose a penalty if the design specifications are violated, so that the PSO algorithm satisfies the specifications when searching for the PID controller parameter. Finally, through the computer simulations, the proposed PSO-PID controller not only satisfies the given design specifications for the terminal voltage step response, but also shows better control performance than other similar recent studies.

Structural Analysis and Magnctic Propcrics of Amorphous $Fe_{78}Si_{9}B_{13}$ Alloy (비정질 $Fe_{78}Si_{9}B_{13}$ 합금의 구조와 자성 연구)

  • 이희복;송인명;유성초;임우영
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.3
    • /
    • pp.179-184
    • /
    • 1993
  • The X-ray diffraction pattern of amorphous $Fe_{78}Si_{9}B_{13}$ alloy was analyzed to obtain the radial distribution function (RDF) where the first peak was in the form of Gaussian function. The calculated coordination number of the form of Gaussian functiono The calculated coordination number of the sample is 13.5, the mean distance betweeon near-neighbor atoms $r_{0}$ is $2.595{\AA}$ and a Gaussian parametet ${\delta}r$ indicating near-neighbor atomic distri-bution is $0.27{\AA}$. The temperature dependence of saturated magnetization at low temperature could be explained by spin wave excitations theory yielding the spin wave stiffness constant as $117.8\;meV\;{\AA}^2$. Also, we tried to fit the observed temperature dependence of saturated magnetization with the Handrich's equation of the modified molecular field theory for the amorphous ferromagnet. Nice fittings are obtained when we used the parameters ${\Delta}=0.32$(S=1/2) and ${\Delta}=0.23$(S=1), respectively. Finally, the calculated spin wave stiffness constant using the parameters and the structural data are $149\;meV\;{\AA}^2$ for S=1/2 and $138\;meV\;{\AA}^2$ for S=1, respectively. The mean exchange coupling integral between near-neighbor atoms was estimated to be 17.9 meV for S=1/2 and 6.7 meV for S=1.

  • PDF